
A-AL15 697 AIR FORCE INST OF TECH WRISHT-PATTERSON AFB ON SCHOO-ETC F/6 15/7
THEATER WARFARE PRORAMS AT AFITS AN INSTRUCTIONAL AIO*(U)
MAR 82 A WAISANEN

UNCLASSIFIED AFIT/SST/OS/82H15

EhIEEEIIIEIIEE
E~lEEEEElhllEE
EIIEEEIIEEEEI
Elllllllllllhu
EEEEEEEEIIIEI
IIEEIIIIIIIII

dc
C~I

THEATER WARFARE PROGRAMS AT AFIT:
AN INSTRUCTIONAL AID

If THESIS

Anthony Waisanen
AFIT/GST/OS/82M-15 Captain USAF

DTICELECTE"...
JUN 18 1982 :

0- D

Approved for public release; distribution unlimited.
uniitd

AFIT/GST/OS/82M-15

THEATER WARFARE PROGRAMS AT AFIT:

AN INSTRUCTIONAL AID

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

Anthony Waisanen

Captain USAF Copy

Graduate Strategic and Tactical Sciences

March 1982 A acessionFor

NTIS GRA&I

Approved for public release; distribution unlimited. DTIC TAB
Unannounced El
Justification

By
Distributl on/
Availability Codes

Avail and/or

Dist Special

' l lIIII II IIII, - % ';...._ 1-

GST/OS/82M-15

Preface

One of the courses offered by the Air Force Institute of

Technology (AFIT) is the Combined Warfare course (ST7.01) which

is designed to teach concepts of warfare. The first year this

course was offered, the class was sent to Maxwell AFB to partici-

pate in the playing of the Theater Warfare Exercise (TWX). This

proved to be an invaluable addition to the course. Unfortunate-

ly, the exercise was designed solely for operation on a Honeywell

computer. If the exercise were to run at AFIT, it would need to

be compatible with at least one of the computers at Wright-

Patterson AFB; the CDC or the Harris.

This report describes the modifications which were required

to make the programs, data and operation compatible with the CDC

computer.

I wish to thank Col Don Stevens for suggesting this topic.

Hopefully, future students will derive as much insight from TWX

as I have. I am indebted to Maj Dan Fox for his patience and

suggestions during the many hours we spent discussing this prob-

lem. I could not have completed half of this thesis effort had

he not introduced me to the UEDIT text editor and the PDP-ll/60.

I also wish to thank the computer personnel at HQ AU/ACDY

and AFIT/AD for taking the time to talk about how the TWX pro-

grams were designed and how they operate. In particular, I wish

to thank Lt Ed Laugel for the many hours he spent explaning the

origins of the TWX and the operation of Honeywell computers.

- ii -

Capt Carl Lizza is also to be thanked for his assistance in the

segmentation process and debugging of the programs. SrA John D.

Long's help and knowledge of the CDC was greatly appreciated.

AFIT would not have the TWX if it were not for these people.

I wish to thank my fellow classmates who suggested modifica-

tions, spent considerable effort in developing a test data base,

and helped in so many other ways.

Fiually, my wife Holly is to be thanked for her patience and

understanding, and support through the many difficult periods

during this project.

Anthony Waisanen

- iii -

TABLE OF CONTENTS

Page

List ofAbrevia tions vi

List of Tables.... vii

I Introduction 1

Background
Problem Statement 2
Scope and Limitations 3

II Modifications 6

Data transfer 6
Program Modification. 8

General 8

Compatible Modifications 8
Incompatible Modifications 10

Batch Progra.. %. . . 11
Interactive Programs 13
UtilityProgrs 15
Library Routis 17

Verification * . 17

III Segmentati0. 18

IV Operation of the Modified TWX Programs 21

General * 22
Initializaono. 23
Execution * * . 24

V Recommendations 26

-iv-

Bibliography 29

Appendix A 30

INPTGO Procedure File/Program Listing 31

Appendix B 39

TWX Library Routines Listings 40

Appendix C 74
Segmentation Procedure File Listings 75

Appendix D...... 86
SETUP Listing * 87

Appendix E 90
File Descriptions 91

Vita 97

'I

List of Abbreviations

Abbreviation Definition

AAFCE Allied Air Forces, Central Europe

AFIT Air Force Institute of Technology
AG Air to Ground interface program
APE AAFCE Planning Executive program
AR Air battle simulation program
CAWC Combined Air Warfare Course
CDC Control Data Corporation (computer)

IP Input Print program
LA Logistics Analysis program
LB Land battle simulation program
LI Land order Input program
MA Merge Actions program
MI Mission order Input program

MR Merge Records program (2ATAF and 4ATAF)

OR Overrun program

SQ Merge Records program (Blue and Red sides)

TWX Theater Warfare Exercise

XX Original main driver routine

-vi -

.. ..

List of Tables

Table Page

I COMMON Block Modifications 9

II Deleted TWX JCL-type Subroutines 14

III Read and Modification Utility Programs 16

IV Daily File Modifications. 22

V WX Object Decks and Libraries 23

VI TWXDATA Files 93

VII TWXPROG Files 94

liX TWXRUN Files 95

IX TWXUTIL Files 96

- vii -

Abstract

This thesis report details the processes and modifications

that were required in order to execute the Theater Warfare Exer-

cise (TWX) on the CDC computers at Wright-Patterson AFB. Prior

to this effort, the TWX programs and data files could only be ac-

cessed and executed with Honeywell computers.

By modifying the data files, program coding, overlaying

techniques, and operation, the TWX can now be run on any CDC com-

puter. Any other computer with sufficient central memory and an

ANSI standard FORTRAN-77 compiler can also execute the programs

provided the operation methods (procedure files) are modified.

- viii -

L I I Imf,= , f , -. ...

THEATER WARFARE PROGRAMS AT AFIT:

All INSTRUCTIONAL AID

I Introduction

One of the objectives of a military institution like the Air

Force Institute of Technology (AFIT) is to give its graduates theI education necessary for them to be able "to understand their cul-

tural and technological environment and to analyze and attempt to

solve its problems (Ref 1:2+)." Ideally, the students should have

the opportunity to apply what they have learned prior to graduat-

ing. Thus, their analyses could be critqued by other analysts in

a controlled setting. Such an interaction could instill in the

student an understanding of the role and process of analyses in

the military. Students in the School of Engineering have very

full class schedules. Since non-computerized exercise would take

too much time and effort to be useful, some computerization is

needed. Thus, attention is directed to computerized exercises.

Background

One way of gaining this experience is to participate in the

Theater Warfare Exercise (TWX) which is played as part of the

Combined Air Warfare Course (CAWC) at Maxwell APB. This is not a

practical solution however considering the time-intensive class-

work required for all AFIT courses. Nor, due to TDY expenses, is

it financially feasible since the TWX typically requires at least

two days for introduction and preplanning and five days of execu-

tion for a minimum of seven days. This was done in February 1981

with the first class of Combined Air Warfare Seminar (ST7.Ol)

students but there were only four students taking the course.

Future classes are expected to number in excess of 15.

Another alternative would be to use a simulation in ex-

istence at AFIT such as STAG (Ref 4). However, STAG is only a

two-player simulation with very limited realism and interaction.

It was not designed to represent real-world results (Ref 4:13).

The most desirable option would be to perform the TWX at

AFIT. This option offers a realistic exercise without excessive

disruption to the schedules of the players and without requiring

a large TDY budget. This would require the modification of the

programs currently being used for the CAWC to a set of programs

which could be run on either the Harris or CDC computers at

Wright-Patterson AFB.

Problem Statement

Prior to this effort, the TNX programs could only be run on

Honeywell computers. If these programs are to be used at AFIT,

they must be able to execute on a variety of computers; specifi-

cally, the Harris and CDC computers. This required that the cod-

in& and data be transferred to one of these computers.

it was decided to convert the programs to ANSI standard

-2-

FORTRAN-77. This resulted in enhanced portability. FORTRAN-77

was selected since all of the TWX programs use character vari-

ables and ENCODE and DECODE statements (which are the FORTRAN-77

equivalent of internal file WRITEs and READs).

A significant effort was required to develop job control

language (JCL) to access the data files and execute the programs.

In the original programs (Ref 7), data file access was accom-

plished with Honeywell machine dependent code in the programs and

not with the JCL. Since file manipulation is strictly a function

of the type of computer system being used, this was changed so

that file manipulation would be completely external to the pro-

grams. Thus, transportation of the TWX programs from one comput-

er system to another could be accomplished without requiring

modification of the TWX source code.

Scope and Limitations

The purpose of this thesis effort was to create a set of

theater level warfare exercise programs at AFIT that are func-

tionally identical to those used in the CAWC at Maxwell AFB on

August 1981. That is, from a player's and analyst's point of

view the programs should appear to operate in identical fashion

to those used in the CAWC. This way, players, analysts, and ex-

ercise administrators who are familiar with one set of the TWX

will be able to function with the other set without lengthy

learning periods. This also permits the use at AFIT of program

documentation and exercise directions which have already been

-3-

dev,"loped for the exercise at Maxwell AFB. This effort was lim-

ited to the transfer and modification of the data files and pro-

gram coding required to execute the programs at AFIT. None of

the algorithms used in determining troop movement, losses, and

others were modified unless the program would not otherwise run.

Because of its accessibility and large storage capacity, the

CDC computer was used in making the modifications and developing

the JCL.

Documentation of this thesis effort is was limited to the

description of that coding which had to be modified. According

to one of the TWX programmers (R-ef 6), the original directives to

the TWX programmers included the requirement for extensive docu-

mentation of every routine. Therefore, this documentation to-

gether with the documentation contained in this thesis should

adequately describe the modified programs.

Finally, modifications to the coding were as limited as pos-

sible and no modifications were made to the data file formats.

When system-specific intrinsic routines were found (for example,

routines which determine binary file size), equivalent FORTRAN-77

coding was developed. The resulting code was placed in a

seperate library, not in the TWX programs themselves. This way,

the translated TWX programs appear to be as similar as possible

to the original and all system-specific coding is located only in

the library, In those instances where a routine could not be

recoded because of name similarity (for example, ENCODE), the

program was modified by changing the offending code into comment

statements and putting the equivalent coding directly after it.

-4-

Calls to some routines like FMEDIA and CREATE are required only

by the Honeywell computers (Ref 5). These calls were changed to

comment statements.

Along with the 2WX programs, source code for 25 utility pro-

grams were also transfered. These programs are used at Maxwell

AFB to manipulate or modify the data bases. Because they are

highly system-specific and contain coding which performs JCL

functions, they have not been converted and, in some cases, simi-

lar programs have been developed. Their code has been retained

on file for future reference.

-5-

II Modifications

There were three major areas involved with modification;

data transfer, coding modification, and verification of the modi-

fied coding. Data transfer involved the conversion of the exten-

sive data bases used by the TWX programs from a Honeywell-

specific format and data representation to a CDC-specific forma t

and data representation. Coding modification involved the iden-

tification of Honeywell-specific coding and the development of

equivalent code which is not specific to one computer. Verifica-

tion was limited in that only those routines which were

developed to replace the Honeywell intrinsic routines were

thoroughly tested; the major TWX programs were verified to the

extent that their operation was identical to the originals.

Data Transfer

Two types of data files are used in the TWX programs;

sequential card image and random access binary (Ref 2). The

transfer of the card image files was only a matter of reading the

magnetic tape; the binary files required considerably more modif-

ication. Since the original data was stored as 36-bit/word

binary, it had to be read in binary form and then written to tape

as card image. The program used to do this read and wrote only

real values. Thus, character variables such as the target names

in file RLUH had to be input manually. Other than this problem,

-6-

the conversion into 60-bit/word binary form only required short

programs that read card image and wrote binary. A different pro-

itram was written for each format of data file. Each of these

transfers was verified using a similar program that read binary

and wrote card image. The output from these programs was com-

pared to the card image listings obtained during the file

transfers.

LA - -

Program Modification

There are three types of programs in TWX; batch, interac-

tive, and utility. These programs and the library routines used

to replace Honeywell specific system routine calls differ greatly

in both function and form and so will be discussed seperately.

First, however, is a general discussion of the major compatibili-

ties and incompatibilities between the Honeywell FORTRAN compiler

and the ANSI standard FORTRAN-77 compiler.

General. There were two types of modifications to the TWX

programs; modifications which were compatible with both the

Honeywell and CDC computers and modifications which were incompa-

tible with the Honeywell FORTRAN compiler.

Compatible Modifications. One of the differences in

compilers is the maximum allowable size of labels and variable

names. In Honeywell FORTRAN, a maximum of 8 characters is al-

lowed for variable, entry, subroutine, and program names. To

minimize the dissimilarity between the original and modified ver-

sions, the seventh and eighth characters were deleted since only

6 characters are allowed by an ANSI standard FORTRAN-77 compiler.

only when a conflict would result were any of the other charac-

ters altered.

Another difference is that the Honeywell compiler allows

character and numeric variables to be in the same COMMON block.

This is not allowed in FORTR.AN-77. When this occurred, the char-

acter variables were placed in a seperate but similarly labelled

COMMON block (Table I).

-8-

TABLE I

COMMON Block Modification

Original Modified Commons
Program Common Numeric Character

- -

AG ACCNTR ACCNTR ACCNTC
APE LAINB LAINB LAINBC
AR BUFFER BUFFER BUFFEC

CNTROL2 CNTRL2 CNTR2C
LA ACDATA ACDATA ACDATC

LGDATA LGDATA LGDATC
LB PAGEDATA PAGEDA PAGECH

TABLDATA TABLDA TABLCH
MI CONTROL CONTRO CONTRC

CYCLE CYCLE CYCLC
READIN READIN READIC

OR OUTPUT OTPUT OTPUTC
TGOUT TGOUT TGOUTC

In some cases source code records extended past the 72nd

column after being formatted for the FORTRAN-77 compiler. For

example, a record is identified as a continuation by the

Honeywell compiler if an ampersand is in the first through sixth

column. The FORTRAN-77 compiler identifies a continuation record

by the presence of any character in the sixth column. This meant

that all continuation lines that did not begin in the sixth

column had to be reformatted to be compatible with the FORTRAN-77

compiler which made some records more than 72 characters long,

the maximum record length. In these cases, the extended coding

was continued on the following line.

Probably the most troublesome difference between the comput-

er systems is that the Honeywell loader initializes all variables

to 0. Since the CDC initializes all variables to negative inde-

-9-

finite, all variables in labelled commons were set to 0 unless

they were defined by the program.

Incompatible Modifications. Not all of the modifica-

tions made to the TTWX programs at AFIT are compatible with the

Honeywell FORTRAN compiler. For example, free-field READ and

PRINT statements in Honeywell FORTRAN are:

READ ,xxxx

PRINT ,xxxx

but in ANSI standard FORTRAN-77 they are:

RE AD* ,xxxx

PRINT *,xxxx

Similarly, direct access files are read and written in Honeywell

FORTRAN using the statements:

READ (lud'rec) xxx

WRITE (lud'rec) xxx

where

lud - device number

rec - record number

The FORTRAN 77 compiler, however, uses the statements:

READ (lud,REC-rec) xxx

WRITE (lud,REC-rec) xxxx

These statements occur infrequently only in the interactive pro-

grams so modification of the coding back to a form compatible

with the H6000 compiler is not difficult.

The original programs made extensive use of intrinsic rou-

tines which would modify the bits of certain variables. Since

this type of operation depends directly on the number of bits per

- 10 -

word being used by a given computer, the routines were recoded

and placed in the library file. Instead of modifying the bits of

a numeric variable, these new library routines modify the charac-

ters of character-type variables (with each variable consisting

of 36 characters which represent the original 36 bits/word).

This implimentation allows the modified programs to run on any

machine using ANSI standard FORTRAN-77 regradless of word length.

This means that the modified use of Boolean variables and

Honeywell intrinsic routines is not easy to modify back to the

original.

All calls to the Honeywell system routines "LINK" and

"LLINK" have been changed to comment statements since they

operated the Honeywell overlay procedures.

Finally, every effort was made to exclude system-dependent

coding and functions. However, some routines cannot realistical-

ly function without them. For example, subroutine DATIM, which

returns the current date and time, uses two CDC intrinsic func-

tions "DATE" and "CLOCK." These may require recoding if another

system is to be used.

Batch Programs. The purpose of the batch programs is to

perform the simulation of a theater-level war using the player-

defined inputs. The players only see the results of these pro-

grams which they use in planning the following day's missions.

Since these programs are never directly accessed by the players,

data file access is performed by JCL rather than by program cod-

ing and no input/output routines required coding modification.

One modification which was required was the use of logical vani-

ables.

One of the options indirectly available to the players is

the number of reports that will be printed by the programs AR,

LB, OR, and LA (words 1 through 19 on records 2 and 3 of file

RMRx# control this). The option is indirect in that the values

can be changed but a utility program must be used. These values

are used as counters and sometimes as logicals with integer 0 be-

ing interpreted as "FALSE" by Honeywell FORTRAN. Since the CDC

FORTRAN-77 compiler interprets all non-negative values to be

"FALSE", the logical variables (words 1, 11, 12, 13 and 15) have

been set to -1. Since words 8 and 9 are used by LB as logicals

and integers, they have also been set to -1 and the coding of

subroutines REPO8 and REP09 have been modified to use their abso-

lute values. The resulting coding will thus function on the CDC

and Honeywell computers.

The air battle simulation program AR required more extensive

modifications. Originally, it was designed to simulate tactical

airlift (TAL), air force augmentation (AUG) and aircraft role

change (RC) functions as well as air battle simulation. Since

the TAL, AUG, and REC functions are now performed by APE, the

subroutines DITAL, DUAUG, and DIRC are no longer needed according

to CAWC personnel at Maxwell AFB (Ref 9). They have been com-

mented out.

Finally, the use of maximums was modified in AR. In TWX,

there is a maximum number of bases/side, aircraft types/side,

cycles/day, munition types/side, corps/side, days/exercise, and

seminars (words 13 through 20 of record 4 of RMRx#). First, the

o 12 -

PA

array size of variable MAX was reduced from 9 to 8 since the

FORTRAN-77 compiler does not permit the reading of more words per

record than were specified when the file was declared. Second,

the actual number of bases/side, aircraft types/side, and so

forth were used as counters in place of the equivalent values of

MAX.

Interactive Programs. Some of the important features of TWX

are the allocation and apportionment of air resources, movement

of materiel, and mission definition. These functions are per-

formed by three interactive programs; APE (A.AFCE Planning Execu-

tive program), MI (Mission Input program), and LI (Land Input

program). All of these programs prompt the player for directions

and modify the appropriate data files; hence, the term, interac-

tive. These programs all had subroutines which determined the

files to be accessed based upon the side, seminar number, and,

for mission inputs, the ATAP number. After this information was

input, the files were accessed using system dependent code within

the programs. Since this function is performed with JCL on the

CDC, these subroutines (Table II) were removed from both programs

and the program INPTR was developed (Appendix A).

-13-

TABLE II

Deleted TWX JCL-type Subroutines

Program Subroutines

APE PIATCH, PILO, PILOPS,

PILOSEM and PILOSIDE

LI PILOSEM and PILOSIDE

MI PIATCH, PILO, PILOPS,
PILOSEM and PILOSIDE

It should be noted that INPTR, together with the JCL necessary to

compile it and catalog the object deck, comprise the file INPTGO

in the Indirect File System (IFS) file TWXRUN.

The purpose of INPTR is to interactively construct the pro-

cedure file XECUTE. If the player correctly inputs the informa-

tion together with the appropriate password, XECUTE will execute

either of three procedure files APEGO, MIGO, or LIGO (these are

discussed in Chapter IV). Thus, converting the programs to

operate on a different computer will only involve modifying these

three procedure files and not any of the programs (assuming the

other computer has a FORTRAN-77 compiler). If the player fails

to input the correct password in three tries, XECUTE will copy a

message for the player to get assistance and then terminate.

When a file is written or modified using a Honeywell comput-

er, the new information is made permanent when information is

read from the same area of the file. For this reason, the dummy

array FLUSH is often read after a number of "writes". According

to the programmers, this would allow continuation in the event of

- 14 -

accidental disruption without requiring a complete restart CRef

6). This activity was replaced by the use of the JCL statements

REPLACE and EXIT,S. If the program (APE, MI, or LI) runs suc-

cessfully, the written file is put in an indirect access file.

If the program is not successful and an abort condition is

detected, the skipping of JCL is stopped by the EXIT,S statement

and the same files are made permanent. This allows the player to

continue from the point immediately prior to the error rather

than requiring a total restart.

Utility Programs. Since 16 out of the 24 data files used by

TWX are binary direct access, modifications to them can only be

made by using interactive programs. Rather than have one program

capable of using a variety of formats, a different program was

written for each format. This resulted in ten read/read and

modify pro, ams (Table III). These programs are all capable of

reading their applicable file(s) and many offer modification op-

tions. They all assume that the file to be read/modified is ac-

cessible as device 1 (in other words, "TAPEl").

-15-

TABLE III

Read and Modification Utility programs

Applicable
Program File

RABREAD RABx#
RACREAD RACx
RAPREAD RAPx#, RPPx#

(no changes permitted)
RBLREAD RBLx#, RRLx#, RMUx
RCRREAD RCRx#
RLUREAD RLUx#
RMRREAD RMRx#

(no changes permitted)
RPPREAD RPPx#
RTGREAD RTGx#
R2MREAD R2Mx#, R4Mx#, RLGx and

RMRx# (logicals are
displayed as integers)

Using these programs to modify a file requires the use of

the TWX Data Base Manual (Ref 2) since these programs print only

values of the data, not meanings.

The operation of these utility programs is not automatic.

Unlike the simulation programs which have procedure files to ac-

cess the necessary tapes, the utility programs must be manually

accessed, compiled and executed by the user with its appropriate

input file also manually accessed by the user. Thus, deliberate

and purposeful activities preceed the modification of .ata files.

This is to prevent accidental modification to the data files.

All utility programs are stored in the IFS file TWXUTIL.

- 16 -

Library Routines

One of the goals of this effort was to minimize the modifi-

cations to the program code. Since all of the programs at some

time or other use routines which are intrinsic only to a

Honeywell computer, this meant that equivalent coding for those

routines had to be developed and added to a TWX library called

TWXLIB (Appendix B). Thus, instead of modifying the program cod-

ing, this library containing routines with the same names as

Honeywell specific system routines is declared and the equivalent

functions are performed.

Verification

There are two types of coding now in the TWX programs; modi-

fied coding and completely new routines (library routines) which

were developed at AFIT. Since no documentation was available for

the original set of programs, verification of the modified coding

was limited to verifying that the programs executed like the ori-

ginals. The library routines were all verified using test pro-

grams which would execute each aspect of each routine. Since

these programs were only for testing purposes, they were retained

until the verification was completed and, thus, are no longer on

file.

- 17 -

III Segmentation1

The major interactive programs APE, MI, and LI have two

features in common: 1.) a central memory requirement in excess of

65K (the maximum interactive core limit for the CDC) and 2) they

were originally written in a highly structured form with each

subroutine either modifying a particular set of arrays or check-

ing and editing input data. This implied that these programs

cculd be run where only the main driver and a very few subrou-

tines would be in central memory at any one time without unduly

increasing the run time. This, in turn, implied that some method

of overlaying could be used to decrease the central memory re-

quirement. Of all possible methods of overlaying, segmentation

was chosen because of its transportability, greater flexibility

(Ref 3:7-1), and because it does not require changes to the

source programs.

The specific methods of segmentation are described in

Chapter 7 of the CYBER LOADER VERSION 1 Reference Manual (Ref 3)

but are not easily understood. Along with the specific rules for

segmentation, the following rules have been found to be helpful:

1. In a TREE directive, the label field must not contain a

program, subroutine, entry point, or function name that

is in the object deck to be segment loaded. Also, this

name must appear in the specification filed of another

TREE directive. If it does not, it will be interpret-

ted as another root segment.

2. A function or subroutine which is to be used by more

18

than one segment must be in the directive field or

fields of one or more INCLUDE directives; it cannot be

In both an INCLUDE directive field and a TREE directive

field.

3. The label field of an INCLUDE field must be a function,

subroutine, or program name and cannot be an arbitrary

label or entry point name.

The first step taken in segmenting the TWX programs was to

determine the subroutine interactions (that is, which subroutines

call which other subroutines) and then construct a tree depicting

those interactions.

The major tree (or "root segment") was constructed by using

the main program as the root and the subroutines called by it as

the branches. In the case where a subroutine in a branch would

call other subroutines, another tree was made using this subrou-

tine as its root and the subroutine name in the original tree was

replaced with the label of this new tree. This procedure was

used in segmenting APE, MI, and LI.

IFor example, the AAFCE Planning Executive Program, APE,

calls subroutine PI (file initialization), OPTN (file modifica-

tion option processor), and RAPUP (final data base modifica-

tions). The first two subroutines both call numerous subroutines

and operate independently so both were declared as trees. This

tree structure was converted into a set of SEGLOAD directives for

processing by the CDC loader. In order to segment a program, the

source is first compiled, the object deck is loaded and then

-19-

operated on by the SEGLOAD directives. The segmented object deck

is then cataloged.

To automate this process, procedure files of JCL and SEGLOAD

directives were developed to convert the source decks of APE, MI

and LI into segmented object decks (Appendix C). The procedure

files also catalog the resulting decks.

To execute any one of these procedure files, the command is

BEGIN,pname,lfnl,lfn2.

where:

pname - procedure name (APESEG, MISEG or LISEG)

lfnl - local file name of the procedure file

ifn2 local file name of the source deck (APE, MI, or LI)

If the local file name is the same as the procedure name,

the procedure file is executed with the command:

pname,lfn2.

where:

pname - procedure name (APESEG, MISEG or LISEG)

lfn2 - local file name of the source deck (APE, MI, or LI)

20 -

IV Opeaton of the Modified TWX Porams

There are two groups of people who need to be involved when-

ever the TWX is executed: players and administrators. The

players are those people who perform the analyses of the outputs,

develop the air and land orders used in the simulation and input

the data by executing the programs APE, MI, and LI. The activi-

ties of the players is described in the Theater Warfare Exercise

(TWX) Players Handbook (Draft Copy) (Ref 8).

The administrators are responsible for the initialization of

the exercise and the direction of student activities. They also

represent the "higher authority" capable of authorizing increases

of forces and use of nuclear resources. These are the people

responsible for the operation of the TWX, execution of the batch

programs SQ, MR, IP, AR, AG, MA, LB, OR, and LA, and resetting of

the file lock flags and exercise day indicators (Table IV). They

are also responsible for the execution of the procedure SETUP

(Appendix D) and the maintenance of the TWX files (Appendix E).

-21.

TABLE IV

Daily File Modifications

Variable Location Reset
File Record(s) Word(s) to

RAPW# 5 - 48 1 -1 ("TRUE")

RBLW# 1 9 0.0

RRLW# 1 9 0.0

RLGW 2 - 3 1 - 2 Current Day
2 - 3 16 0

RLUW# 1 6 - 7 Current Day

RMRR# 1 7 Current Day

R2MW# 2 - 3 1 - 2 Current Day
2 - 3 3-5,13,16-17 0
4 -265 1 -20 0

R4MW# 2 - 3 1 -2 Current Day
2 - 3 3-5,13,16-17 0

4 -265 1 -20 0

General

The operation of the TWX is in two phases: initialization

and execution. Initialization is essentially the set-up of the

necessary files and object decks. It also includes the running

of programs to produce the data needed by the players for plan-

ning. The execution phase invloves the cyclical execution of in-

teractive and batch programs to simulate the daily publishing and

execution of air and land orders. The initialization phase oc-

9 curs any time prior to the exercise while the execution phase

- 22 -

lasts for a maximum of five simulated days.

Initialization

The first step in executing the TWX is the construction of

all required object decks and libraries (Table V). This can be

performed manually but the procedure file SETUP (Appendix D) has

been developed for this purpose. To execute this procedure file,

it is necessary to make a local copy using the IFS command

"GET,SETUP,ID-IMXRUN" and then execute it with the statement

"SETUP."

TABLE V

TWX Object Decks and Libraries

Object
Programs Decks

APE APELGO
AR ARLGO
LB LBGO
LI LIGO
MI MIGO

Side Libraries

BLUE DATAll, DATA12, DATA13
RED DATA21, DATA22, DATA23
Both BACKUP, BATCHIN, MASTER

The next step is to execute the Weapon System Summary pro-

gram (WSS). This too has been automated; the file WSSGO is re-

- 23 -

trieved from the indirect library file TWXRUN and then executed

with the statement "WSSGO." The output from this program is

stored in the indirect library file PRINT and is needed by the

players for the duration of the exercise (it contains such infor-

mation as the aircraft names, weapon loadings, and effectiveness

indices).

After the initial introduction to the exercise, the players

enter the preplanning stage. This stage requires that the batch

programs AR, AG, MA, LB, OR, and LA be sequentially executed.

The output files ARPLBI, ARPLR1, LBPLB1, LBPLR1, ORP2Bl, ORP4Bl,

ORP2R1, ORP4R1, LAP2B1, LAP4BI, LAP2Rl, and LAP4R1 are then re-

trieved from the indirect library file PRINT and given to the

players for their preplanning. The execution phase of the exer-

cise now begins.

Execution

The execution phase of the TWX begins with the players performing

their mission planning and entering data with the interactive

programs APE, MI and LI. When these programs have been executed,

the batch programs SQ, MR, IP, AR, AG, MA, LB, OR, and LA are

sequentially executed and the output files are given to the

players for the next day's mission planning (each simulat on day

consists of a day and a night cycle). This phase continues 4ntil

the exercise administrators terminate the exercise for a maximum

of five simulation days.

In the original TWX, MR through LA were all major subrou-

-24-

tA

tines of a single program, XX (the source for the main driver XX

is retained as TWXSRCE in the indirect library file TWXPROG).

These programs are run seperatedly to improve flexibility and to

decrease turn-around time. In fact, only AR and LB require too

much central memory to be executed in time sharing mode (it

should be noted that OR does require segmentation to execute in

time sharing mode). Rather than have an executive program which

sequentially executes the batch routines, the JCL for the modi-

fied programs, beginning with AR, accesses the procedure file for

the succeeding routine and executes it. These procedure files

create and batch the JCL necessary to execute the succeeding pro-

gram. Each of these procedure files has the suffix GOB and is

stored in the indirect library file TWXRUN. SQ, MR, and IP, how-

ever, must be executed individually with procedure files SQGO,

MRGO, and IPGO respectively.

After all batch programs have been executed, the appropriate

data files are replaced and the cycle begins again with the

players performing analysis and planning and again entering data

using the interactive programs APE, NI and LI.

- 25 -

V RLECOMMENDAT IONS

Because of the amount of time which was required to

translate the data and programs into a modifiable form, some

problem areas could not be addressed with this thesis effort.

This includes areas such as validation of the original algo-

rithms, streamlining of the batch programs, modification of the

land battle program, and complete and thorough documentation of

all programs.

The validation and documentation of the original coding was

not performed because the necessary analyst's manuals are either

non-existent or are too scarce to be made available. The set of

TWX programs used in the CAWC are continually being modified.

Thus, it is recommended that the programs at AFIT be documented

without referrence to future manuals from Maxwell AFB.

The air and land battle programs (AR and LB respectively)

both have central memory requirements in excess of 225K. Because

of this and the large amounts of central processor and

input/output time required, both jobs have very long turn-around

times. One was of streamlining both programs would be to segment

them. There are two procedure files in the indirect library file

TWXRUN which have been designed to compile, segment, and catalog

the segmented object decks of AR and LB. These procedure files

are ARSEG and LBSEG respectively. Time did not permit the final

verification of either of these two procedure files.

Currently, the land battle program and data files are not

designed to provide Information regarding future strategies.

-26-

This requires the players who are planning ground-support air

sorties to guess what their ground forces will be doing during

the next day of simulation. This clearly needs to be modified.

A suggestion would be to modify the printout so it provides not

only the location of the forces, but also its direction.

There is no automatic resetting of data files. Whenever

APE, MI or LI is executed, some data file values are changed to

indicate the status of the user. If the program terminates nor-

mally, these values (lock flags) are set to I indicating that the

user had completed the desired modifications of those data bases.

If those data bases are used by the same program, the user will

be denied access to them until the lock flags are set to 0. Be-

fore another day of simulation can begin, the lock flags in files

RBLW#, RRLW#, RLGW#, R2MW#, and R4MW# must be set to 0 and the

exercise day updated in files RLCW#, RMRR#, R2MW#, and R4MW#.

The program II (Input Initialization) was designed to perform

this operation on the Honeywell, but II was not modified because

of its highly specific coding. Currently, these file modifica-

tions are made manually using the utility programs described in

Chapter II.

Finally, there is one unresolved problem. When either a

segmented or unsegmented version of MI is executed and an invalid

offensive counter air (OCA), battle area interdiction (BAI), or

interdiction (IND) order is input, an error condition is detected

and the player is asked if the order is to be changed. Regard-

less of whether the answer is "Y" or "N", a Mode i error occurs

(an illegal address is specified). This condition appears to be

- 27 -

the result of the AO register for subroutine EDITCl being modi-

fied by subroutine CYFMTI. The addition of "PRINT" and "CONTIN-

UE" statements has not changed the error condition; the error

remains in the address for the variable, INTS02.

-28-

Bibliography

1. Air University. AFIT 1979-81 Catalogue, 18: (undated).

2. Air University. TWX Data Base Manual. Maxwell AFB:
Alabama, undated.

3. Control Data Corporation. CYBER Loader Version 1
Reference Manual (Revision G). California: Control
Data Corporation (1979).

4. Foley, John M. STAG: A Two Person Simulated Tactical
Air War Game. Air Force Institute of Technology:
Wright-Patterson AFB, Ohio, March 1980.
(AFIT/GST/OS/80M-2).

5. Honeywell. Fortran. Computer manual. Minneapolis:
Honeywell Corporation, January 1975.

6. Laugel, Edmund L. Conversations. Wright-Patterson
AFB: Ohio (9 July 1981 to 9 March 1982).

7. Ritchey, Conrad. et. al. TWX computer program
listings. Maxwell AFB, Alabama (12 August 1981).

8. Waisanen, Anthony. Theater Warfare Exercise (TWX)
Players Handbook (Draft Copy). School of Engineering,
Air Force Institute of Technology, Wright-Patterson
AFB, Ohio, 1982.

9. White, Fred. Telephone conversation. Maxwell AFB:
Alabama (9 March 1982).

- 29 -

I A

Appendix A

INPTGO Procedure File/Pro~ram Listinj

-30-

1 •.PROC,INPTGO.
2 .* THE PURPOSE OF THIS PROCEDURE FILE
3 .* IS TO COMPILE THE PROGRAM "INPTR" AND
4 .* THEN CATALOGUE THE OBJECT DECK AS "INPTRLGO"

5 .* UNDER THE USER'S ACCOUNT NUMBER.
6
7 .* THE FIRST STEP IS TO RETURN ANY LOCAL FILE

8 .* NAMED "LGO."
9 RETURN,LGO.

10 .* THEN "LGO" IS REQUESTED.

11 REQUEST,LGO,*PF.
12 .* INPTR IS NOW COMPILED.
13 FTN5,I-PROG,LO-O,DB•

14 .* THEN THE OBJECT FILE IS CATALOGUED
15 CATALOG,LGO, INPTRLGO,XR-FOX,PW-FOX,RP-999.
16 .* THE LOCAL FILE AREA IS CLEANED.
17 RETURN,LGO,PROG.
18 .* CONTROL IS RETURNED TO THE USER.
19 REVERT.

20
21 .* THIS LINE DEFINES LOCAL FILE "PROG"
22 .* WHICH WILL CONTAIN THE SOURCE OF INPTR
23 •DATA,PROG.

31

24 PROGRAM INPTR

25 COMMON/FILEDA/ICHOIS, ISEM, ISIDE, IATAF
26 COMMON/ITIMS/ITRY
27 DATA ICHOIS/O/, ISEM/OI, ISIDE/O/, IATAF/O/

28 OPEN(I ,FILE--XECUTE-,ACCESS--SEQUENTIAL)
29 REWIND I
30 CX FIND OUT WHICH PROGRAM IS TO BE RUN

31 50 PRINT 12
32 READ *,ICHOIS
33 IF(ICHOIS .LT. 4) THEN
34 IF(ICHOIS .LT. 1) GO TO 50
35 ITRY - 0
36 CALL INTER
37 IF(ITRY .LT. 3) THEN
38 CALL BUILD
39 CALL INFORM

40 ELSE
41 CALL DONE
42 ENDIF
43 ELSE
44 CALL STOPR
45 ENDIF

46 STOP
47 12 FORMAT(- DO YOU WANT TO RUN THE:',/,
48 &- 1) AAFCE PLANNING PROGRAM',/,
49 & 2) MISSION PLANNING PROGRAM',/,
50 & 3) LAND MOVEMENT PROGRAM",/,
51 & 4) STOP >)
52 END

32

53 SUBROUTINE BUILD
54 COMMON/FILEDA/ICHOIS, ISEM, ISIDE, IATAF
55 CX THIS SUBROUTINE BUILDS THE APPROPRIATE JCL FILE
56 CX TO ACCESS ALL NECESSARY DATA FILES.
57 CX BRANCH ON TYPE OF PROGRAM4
58 IF(ICHOIS .EQ. 1) THEN
59 WRITE(l,11) ISIDE, ISEM., IATAF
60 ELSE IF(ICHOIS .EQ. 2) THEN
61 WRITE(1,12) ISIDE, ISEM, IATAF
62 ELSE
63 WRITE(1,13) ISIDE, ISE11, IATAF
64 ENDIF
65 RETURN
66 11 FORMAT(-.PROC,XECUTE.-,/,
67 &PGI,,1,I, /
68 &-EXIT,S.-,/,-REVERT.-)
69 12 FORMAT(U.PROC,XECUTE.',/,
70&MG,-I - 113g,* i
71. &-EXIT,S.-,/,-REVERT.-)
72 13 FORM4AT(-.PROC,XECUTE./,

74 &-EXIT,S.',/,'REVERT/')
75 END

33

76 SUBROUTINE DONE

77 CX THIS SUBROUTINE BUILDS A FILE THAT WILL INFORM
78 CX THE USER OF HIS FAILURE TO PROPERLY ACCESS THE
79 CX THE FILES.

80 WRITE(1,12)
81 RETURN
82 12 FORMAT(-.PROC,XECUTE.-,/,-CONNECT,OUTPUT.-,/,
83 &'COPY,KNUJ.,/,RETURN,KNUJ. ,/,
84 &-RETURN,XECUTE,LGO.,/,-REVERT.-,/,
85 &'.DATAKNUJ.',/,' YOU ARE OBVIOUSLY HAVING PROBLEMS.',/,

86 &' PLEASE GET SOME HELP.-,/,.EOF-)
87 END

34

88 SUBROUTINE INFORM

89 COMMON/FILEDA/ICHOIS, ISEM, ISIDE, IATAF
90 P IN 12
91 12 FORMAT(- PLEASE SIT BACK FOR A FEW MINUTES WHILE',/,
92 & YOUR FILES ARE ATTACHED. THE PRINTOUT MAY BE-,/,
93 & RATHER MESSY BUT IS, UNFORTUNATELY, NECESSARY.-,/,
94 & DO NOT TOUCH ANY OF THE KEYS UNTIL THE PROGRAM',/,
95 &- REQUESTS SOME INPUT. THANK-YOU FOR YOUR COOPERATION.-)
96 RETURN
97 END

35

98 SUBROUTINE INTER

99 COMMON/FILEDA/ICHOIS, ISEM, ISIDE, IATAF
100 COMMON/ITIMS/ITRY
101 CX THE PURPOSE OF THIS SUBROUTINE IS TO INTERROGATE
102 CX THE STUDENT TO DETERMINE HIS SEMINAR # (ISEM), SIDE
103 CX (ISIDE, WHERE 1 > BLUE AND 2 -> RED), AND ATAF
104 CX IF APPLICABLE.
105 CX
106 CHARACTER*4 INPT, IPASS(12), SIDE(2), IANS*1
107 DATA SIDE/'BLUE-, 'RED -/
108 DATA IPASS/'PAS1,(PAS2,'PAS3, PAS4',
109 & -PAS5-,"PAS6-,-PAS7-,"PAS8-,
110 & -PAS9-,-PASO-,"PASA",-PASB'/

ill CX NOW INTERROGATE FOR SIDE, SEMINAR, AND ATAF
112 10 PRINT *,' WHICH SIDE ARE YOU ON, RED OR BLUE ? >-
113 READ 23, INPT
114 IF(INPT .NE. -BLUE- .AND. INPT .NE. -RED"
115 & .AND. INPT .NE. ' RED-) THEN
116 PRINT *,' ONLY "BLUE" OR "RED "- ALLOWED -
117 GO TO 10
118 ENDIF
119 ISIDE - 1
120 IF(INPT .NE. 'BLUE') ISIDE - 2
121 CX GET THE SEMINAR NUMBER
122 20 PRINT *," WHICH: SEMINAR ARE YOU IN (I OR 2)? >'
123 READ *,ISEM
124 IF(ISEM .NE. 1 .AND. ISEM .NE. 2) THEN
125 PRINT *,' ONLY 1 OR 2 ALLOWED -
126 GO TO 20
127 ENDIF
128 IF(ICHOIS .EQ. 2) THEN
129 CX GET THE ATAF NUMBER
130 30 PRINT *,- WHICH ATAF (2 OR 4)? >
131 READ *, IATAF
132 IF(IATAF .NE. 2 .AND. IATAF .NE. 4) THEN
133 PRINT *,' ONLY 2 OR 4 ALLOWED'
134 GO TO 30
135 ENDIF
136 ENDIF
137 CX CHECK IF INPUT DATA IS CORRECT SO FAR
138 IF(ICHOIS .NE. 2) THEN
139 IATAF - 0
140 PRINT 12, SIDE(ISIDE), ISEM
141 ELSE
142 PRINT 22, SIDE(ISIDE), ISEM, IATAF
143 ENDIF
144 READ 13, IANS
145 IF(IANS .NE. -Y-) GO TO 10
146 CX CALCULATE THE PASSWORD INDEX FOR THIS COMBINATION
147 INDEX - ISIDE * 6 + ISEM * 3 + IATAF/2 v 8

36 I

148 CX ASK FOR THE PASSWORD
149 40 PRINT *,' INPUT THE PASSWORD PLEASE >
150 READ 23, INPT
151 IF(INPT .NE. IPASS(INDEX)) THEN
152 ITRY - ITRY + 1
153 PRINT 32,INPT
154 IF(ITRY .LT. 3) GO TO 40

155 ELSE
156 PRINT *,- PASSWORD IS CORRECT.-
157 ENDIF
158 RETURN
159 12 FORMAT(' YOUR INPUTS ARE:',/,' SIDE -,A4,/,
160 & 1 SEMINAR # : o$12j/,/p
161 &o IS THIS CORRECT (Y OR N) >-)
162 22 FORMAT(o YOUR INPUTS ARE:',/,' SIDE ',A4,/,
163 & 1 SEMINAR # : -,12,/,- ATAF # ",12,//
164 & IS THIS CORRECT (Y OR N) >')
165 32 FORMAT(- SO SORRY, BUT -,A4,- IS NOT THE VALID PASSWORD.-)
166 13 FORMAT(A1)
167 23 FORMAT(A4)
168 END

37

i ,

169 SUBROUTINE STOPR

170 CX THIS SUBROUTINE SAYS GOOD-BYE TO THE STUDENT.
171 CX
172 WRITE(1,12)
173 RETURN
174 12 FORMAT(-.PROC,XECUTE.-,/,'CONNECT,OUTPUT.",/,
175 &-COPY,KNUJ. ,/,-RETURN,KNUJ.-,/,

176 &-RETURN,XECUTE,LGO. ,/, REVERT. ,/,
177 &-.DATA,KNUJ. ,/,
178 &' YOU REALLY SHOULD NOT HAVE CHOSEN THIS OPTION.-,/,

179 &- IF THERE IS SOME QUESTION AS TO WHICH OPTION-,/,
180 & YOU SHOULD HAVE CHOSEN, PLEASE CONTACT THE-,/,
181 &' GAME ADMINISTRATORS. THANK-YOU.-,/,

182 &'.EOF')
183 END
184 •EOF

38

Appendix bi

TWX Library Routines Listings

-39

1 FUNCTION FLD(I, K, E)
2
3 CX* *

4 CX* THE PURPOSE OF THIS FUNCTION *
5 CX* IS TO RETURN K CHARACTERS OF WORD E *
6 CX* BEGINNING WITH POSITION (I+1). THIS IS*
7 CX* THE FORTRAN 77 EQUIVALENT TO FUNCTION *
8 CX* FLD AS DESCRIBED ON PAGE 6-7 OF THE *
9 CX* HONEYWELL FORTRAN MANUAL. HOWEVER, *
10 CX* ONLY THE FIRST FORM OF FLD IS HANDLED *
11 CX* BY THIS FUNCTION. THE OTHER TYPE IS *
12 CX* HANDLED BY FUNCTION FLD2. *
13 CX* *
14 CX******** C A U T I 0 N *
15 CX* *
16 CX* E MUST BE OF CHARACTER*36 TYPE, *
17 CX* 0 .LE. I .LE. 35 *
18 CX* I .LE. K .LE. 36 *
19 CX* *
20
21 CX
22 CHARACTER *(*) E
23 J1 I + I1
24 J2 - Jl + K - 1
25 FLD - FLOAT(ICH2N(E(J1:J2)))
26 RETURN
27 END

40

28 FUNCTION ICH2N(ICH)
29 C
30
31 C C
32 CX AUTHOR: ANTHONY WAISANEN C
33 CX CAPT USAF C
34 CX DECEMBER 1981 C
35 C C
36 C THE PURPOSE OF THIS FUNCTION C
37 C IS TO CONVERT A CHARACTER STRING TO C
38 C AN INTEGER. C
39 C C
40 C ********** C A U T I 0 N * C
41 C C
42 C L. WIU Dr4~L'. DQ. MI~ 4 .A C
43 C C
44
45 C
46 CHARACTER *(*) ICH
47 C
48 CX FIND L (NUMBER OF CHARACTERS IN ICH)
49 C
50 L - LEN(ICH)
51 C
52 CX CONVERT ICH TO AN INTEGER
53 C
54 ICH2N - 0
55 DO 15 I - 1, L
56 C MOVE ICH2N OVER 1 DECIMAL PLACE
57 ICH2N - ICH2N * 10
58 ICHADD - ICHAR(ICH(I:I)) 16
59 CX ADJUST IF OUTSIDE OF BOUNDS
60 IF(ICHADD .GT. 9) ICHADD 0
61 CX
62 ICH2N - ICH2N + ICHADD
63 15 CONTINUE
64 C
65 RETURN
66 END

41

F

67 FUNCTION RAND(X)
68
69 CX* *
70 CX* IN THE ORIGINAL PROGRAMS, "RAND" WAS *
71 CX* USED TO RETURN A UNIFORM RANDOM NUMBER *
72 CX* BETWEEN 0 AND I. THIS IS EQUIVALENT TO*
73 CX* THE CDC FUNCTION "RNF," THEREFORE, *
74 CX* RANF WILL BE USED. *
75 CX* *
76 CX******** C A U T 1 0 N *
77 CX* *
78 CX* THIS FUNCTION MUST BE CHANGED IF A *
79 CX* DIFFERENT MAIN FRAME IS TO BE USED. *
80 CX* *
81
82 CX
83 Y - .273 E 03
84 Z - .1 E 01
85 X - AMOD Y*X, Z)
86 RAND - X
87 RETURN
88 END

42

i

89 INTEGER FUNCTION ISETSW(N)
90
91 CX* *
92 CX* THE PURPOSE OF THIS FUNCTION *
93 CX* IS TO SENSE THE VALUE OF THE NTH*
94 CX* BIT IN THE PROGRAM SWITCH WORD. *
95 CX* IN THE TWX PROGRAM, THE SWITCH *
96 CX* WORD IS ONLY USED TO SWITCH FROM*
97 CX* THEATER LEVEL SIMULATION (WHERE*
98 CX* BIT #35 - 0) TO CORPS LEVEL *

99 CX* SIMULATION (BIT #35 - 1). SINCE*
100 CX* ONLY THEATER LEVEL SIMULATIONS *
101 CX* ARE DESIRED, THIS FUNCTION WILL *
102 CX* ALWAYS RETURN A 0. *
103 CX* *
104
105 CX
106 ISETSW - 0
107 RETURN
108 END

43

109 INTEGER FUNCTION KOMPCH(IWORDI, Ni, IWORD2, N2, M)
110
111 CX* THIS FUNCTION COMPARES K CHARACTERS OF IWORDI

112 CX* (BEGINNING WITH Ni) WITH M CHARACTERS OF IWORD2

113 CX* (BEGINNING WITH N2). KOMPCH - 0 IF THEY ARE
114 CX* EQUAL I IF THEY ARE NOT.
115 CX*
116 CX********* C A U T I 0 N *********
117 CX* IWORDI AND IWORD2 MUST BE CHARACTER TYPE

118 CX*
119 *********************

120 CHARACTER *(*) IWORDI, IWORD2
121 LAST1 -N + M - 1

122 LAST2 - N2 + M - 1
123 CX INITIALIZE KOMPCH TO "FALSE"
124 KOMPCH - 1
125 CX COMPARE IWORDL AND IWORD2
126 IF(IWORDI(NI:LASTI) .EQ. IWORD2(N2:LAST2)) KOMPCH - 0
127 RETURN

128 END

44

129 LOGICAL FUNCTION CHKBIT(BIT,ARRAY,DIM)
130 C
131 C CHECKS TO SEE IF BIT IS SET IN ARRAY - TRUE/FALSE
132 C DEPENDING UPON BIT.
133 C PIERCE 1980
134 CX WAISANEN 1982
135 C
136 CX INTEGER BIT,DIM,ARRAY,WORD,BITI
137 CX DLMENSION ARRAY(DIM)
138 INTEGER BITDIH,WORD,BIT1

139 CHARACTER*36 ARRAY(*)
140 C
141 WORD-((BIT-1)/36)+1
142 BITI-MOD(BIT-1,36)
143 CHKBIT-(FLD(BIT1,1,ARRAY(WORD)).EQ.1)
144 RETURN
145 END

45

146 SUBROUTINE BCDASC(WORDI, WORD2, N)
147
148 CX* *
149 CX* THE PURPOSE OF THIS SUBROUTINE *
150 CX* IS TO EQUATE WORDi WITH WORD2. *
151 CX* IT IS A NECESSARY SUBROUTINE WHEN *
152 CX* USING A HONEYWELL COMPUTER SINCE NOT
153 CX* ALL VARIABLES ARE KEPT AS ASCII. FOR *
154 CX* EXAMPLE, DATA STORED ON A DIRECT *
155 CX* ACCESS FILE IS BCD WHEREAS DATA READ *
156 CX* INTERACTIVELY IS ASCII. *
157 CX* SUCH IS NOT THE CASE WITH THE CDC *
158 CX* SO, SINCE THE PROGRAMS USE THIS *

159 CX* ROUTINE REGULARLY, THIS DUMMY ROUTINE *
160 CX* EXISTS RATHER THAN MAKING ALL CHANGES.*
161 CX* *
162 CX******** C A U T I 0 N *
163 CX* *
164 CX* WORDI AND WORD2 MUST BE CHARACTER *
165 CX* TYPE. N IS A DUMMY ARGUMENT. IN THE *
166 CX* ORIGINAL VERSION, IT DETERMINED THE *
167 CX* NUMBER OF CHARACTERS TO BE CONVERTED. *
168 CX* *
169
170 CX
171 CHARACTER *(*) WORD1, WORD2
172 WORD2 - WORD1
173 RETURN
174 END

46

175 SUBROUTINE BLNKOU(BUFFR)
176 CX
177
178 CX* *

179 CX* THE PURPOSE OF THIS SUBROUTINE *
180 CX* IS TO "BLANK-OUT" A CHARACTER STRING.*
181 CX* *

182 CX******** C A U T I 0 N
183 CX* *
184 CX* BUFFR MUST BE CHARACTER TYPE. *
185 Cx* *
186
187 Cx
188 CHARACTER *(*) BUFFR
189 WRITE(BUFFR,-(A1)) - -

190 RETURN
191 END

47

192 SUBROUTINE CALLSS(N)
193
194 CX
195 CX THIS SUBROUTINE IS USED BY THE HONEYWELL
196 CX TO TRANSMIT JOB CONTROL LANGUAGE (JCL)
197 CX FROM AN EXECUTING PROGRAM TO THE SYSTEM.
198 CX THE FOLLOWING CODING IS JUST A DUMMY.
199 CX
200
201 CX
202 CHARACTER *(*) N
203 RETURN
204 END

48

205 SUBROUTINE CONCAT(STR1,NlSTR2,N2,N3)
206 C
207
208 C C
209 CX AUTHOR: ANTHONY WAISANEN C
210 CX CAPT USAF C
211 CX DECEMBER 1981 C
212 C C
213 C THE PURPOSE OF THIS SUBROUTINE IS CONCATINATE C
214 C A NUMBER OF CHARACTERS (N3) OF A CHARACTER C
215 C STRING (STRi) BEGINNING WITH THE Ni CHARACTER C
216 C WITH N3 CHARACTERS OF ANOTHER CHARACTER STRING C
217 C (STR2) BEGINNING WITH ITS N2 CHARACTER. C
218 C C
219 C ********** C A U T I 0 N ********* C
220 C C
221 C N2 + N3 - 1 SHOULD NOT EXCEED THE NUMBER OF C
222 C CHARACTERS IS STR2 OR STRANGE THINGS WILL RESULT. C
223 C C
224
225 C
226 CHARACTER * 1 STRI, STR2
227 LAST1 - Ni + N3 - 1
228 LAST2 - N2 + N3 - 1
229 C
230 STR1(Nl:LAST1) - STR2(N2:LAST2)
231 C
232 RETURN
233 END

49

234 SUBROUTINE CREATE(LUD, ISIZE, N, ISTAT)
235
236 CX* THE PURPOSE OF THIS SUBROUTINE IS *
237 CX* TO CREATE A LOCAL DIRECT ACCESS *

238 CX* FILE. IT IS ESSENTIALLY THE EQUI- *
239 CX* VALENT OF THE HONEYWELL SUBROUTINE *
240 CX* OF THE SAME NAME. *
241
242 Cx
243 OPEN(UNIT-LUD, RECL-ISIZE, IOSTAT-ISTAT, ERR-1O,
244 & ACCESS--DIRECT-)
245 IF(ISTAT .NE. 0) THEN
246 10 PRINT*,' TROUBLE IN CREATE WITH ISTAT -',ISTAT
247 ENDIF
248 RETURN
249 END

50

250 SUBROUTINE DATIM(DAYT,THYME)

251 C
252 C **THIS ROUTINE RETURNS AN 8 CHARACTER DATE (-DAYT-) FIELD AND A REAL
253 C **VALUE OF TIME (-THYME-) IN THE FORM OF -MM/DD/YY' AND !H.XXXXX

254 C **(THYME IS A REAL VARIABLE).
255 CX **AUTHOR: WAISANEN 2 DEC 81
256 CX THIS SUBROUTINE IS COMPLETELY SYSTEM DEPENDENT
257 CX BECAUSE OF THE WAY THE CURRENT DATE AND TIME
258 CX ARE CALLED. DEPENDING ON THE PARTICULAR SYSTEM
259 CX BEING USED, THE CALLS TO "DATE" AND "TIME"
260 CX SHOULD BE ALL THAT AEQUIRE MODIFICATION.
261 C
262 CX THIS SUBROUTINE HAS BEEN MODIFIED FOR THE
263 CX CYBER/CDC MAINFRAME
264 CHARACTER*1O DATE, CLOCK, DUM, DAYT*8
265 REAL THYME
266 CX FIRST, GET THE CURRENT DATE
267 DUM - DATE(O?
268 DAYT - DUM(2:9)
269 C NOW FIND THE TIME
270 DUM - CLOCK(O)
271 C THE CHARACTER STRING 'DUM' IS OF THE FORM:
272 C ^HH.MM.SS.
273 C AND MUST BE CONVERTED TO THE REAL VARIABLE 'THYME'
274 THYME - FLOAT((ICHAR(DUM(2:2)) - 16) * 10 +
275 & (ICHAR(DUM(3:3)) - 16)) +
276 & FLOAT(((ICHAR(DUM(5:5)) -16) * 10+
277 & (ICHAR(DUM(6:6)) - 16)) * 60 +
278 & (ICHAR(DUM(8:8)) - 16) * 10 +
279 & (ICHAR(DUM(9:9)) - 16)) / 3600.0
280 RETURN
281 END

51

282 SUBROUTINE DETACH(IFILE, ISTAT)
283
284 CX* *
285 CX* THIS SUBROUTINE IS THE FORTRAN 77 *
286 CX* EQUIVALENT OF THE HONEYWELL ROUTINE *
287 CX* OF THE SAME NAME. UNLIKE THE HONEY- *
288 CX* WELL ROUTINE, TAPE# IFILE IS NOT *
289 CX* RETURNED BUT IS ONLY CLOSED. *
290 CX* IF ISTAT .NE. 0, THEN AN ERROR HAS *
291 CX* OCCURED AND TAPE# IFILE MAY NOT BE *
292 CX* PROPERLY CLOSED. *
293 CX* *
294 CX******** C A U T I 0 N *
295 CX* *
296 CX* THERE ARE NO CAUTIONS WITH THIS *
297 CX* ROUTINE. *
298 CX* *
299 ***
300 CLOSE(UNIT-IFILE, IOSTAT-ISTAT, ERR-O)
301 CX ERR IS SPECIFIED TO FORCE THE PRINTING OF THE
302 CX ERROR STATEMENT.
303 10 IF(ISTAT .NE. 0) THEN
304 PRINT 12, ISTAT, IFILE
305 ENDIF
306 RETURN
307 12 FORMAT(- DETACH ERROR # -,13,- WITH TAPE -,12)
308 END

52

309 SUBROUTINE FLD2(I, K, E, N)
310
311 CX* *
312 CX* THE PURPOSE OF THIS SUBROUTINE *
313 CX* IS TO SET K CHARACTERS OF WORD E TO # N*
314 CX* BEGINNING WITH POSITION (I+l). THIS IS*
315 CX* THE FORTRAN 77 EQUIVALENT TO SECOND *
316 CX* FORM OF THE FUNCTION FLD AS DESCRIBED *
317 CX* ON PAGE 6-7 OF THE HONEYWELL FORTRAN *
318 CX* MANUAL. *
319 CX* *
320 CX******** C A U T I 0 N
321 CX* *
322 CX* E MUST BE OF CHARACTER*36 TYPE, *
323 CX* 0 .LE. I .LE. 35 *
324 CX* 1.LE. K .LE. 36 *
325 CX* *
326 * ********************** *
327 CX
328 CHARACTER *(*) E, NUM*1
329 CALL N2CH(NUM, N)
330 DO 15 J - 1, K
331 IPOS J- + I
332 E(IPOS:IPOS) " NUM
333 15 CONTINUE
334 RETURN
335 END

53

336 CX*#RUNH *-;FKADYO91DO7OIFKADYLB1OBJECT/ILLEGAL(NOGO)
337 CX SUBROUTINE ILLEGAL(IPOS)
338 SUBROUTINE ILLEGA(IPOS)
339 C
340 C WRITTEN BY CAPT. PIERCE 5 DEC 1979
341 CX MODIFIED BY CAPT WAISANEN MAR 1982
342 C
343 CHARACTER*11 FMT
344 DATA FMT/'(XXX," . ./
345 C
346 IF(.NOT.(IPOS.LE.77))GO TO 10
347 C THEN
348 CX ENCODE(FMT,100)IPOS
349 WRITE(FMT, 100)IPOS
350 WRITE(6,FMT)
351 GO TO 20
352 C ELSE
353 10 CONTINUE
354 WRITE(6,200)IPOS

355 20 CONTINUE
356 C ENDIF
357 CXLO0 FORMAT(T2,I2)
358 100 FORMAT(-(o,I2,'X,-...-)
359 200 FORMAT(6X,-POSITION-,I3,o->o)
360 RETURN

361 END

54

362 CX *#RUNH *-;FKADYOI/SOURCE/TWXLIB/SLDSBUJ

363 CX THE FOLLOWING SUBROUTINE HAS bEEN DETERMINED
364 CX TO BE UNNECESSARY. THEREFORE, IT HAS BEEN DELETED AND
365 CX REFERENCES TO IT HAVE BEEN MODIFIED TO 'MSORTY'.
366 CX
367 CX SUBROUTINE flBSORTY(BLF,ITAC,SRATE.SFACTACSORT)
368 C

369 C BLALOCK:9 DEC 77
370 C CHITWOOD:6 APR 81
371 C CALCULATE THE NORMAL SORTIES
372 C
373 CX ACSORT-AINT(BLF*FLOAT(ITAC)*SRATE*SFACT)
374 CX RETURN
375 CX END
376 C *#RUNH *=;FKADYO/CSTR/TWXLIB/CLDSGUJ(NOGO)
377 SUBROUTINE MSORTY(BLF,ITAC,SRATE,SFACT,ACSORT)
378 C
379 C BLALOCK:9 DEC 77;CHITWOOD 6 APR 81
380 C CALCULATE THE NORM4AL SORTIES
381 C
382 ACSORT-AINT(BLF*FLOAT(ITAC)*SRATE*SFACT)
383 RETURN
384 END

55

385 SUBROUTINE N2CH(CHARA, I)
386
387 Cx* *
388 CX* THE PURPOSE OF THIS SUBROUTINE *

389 CX* IS TO CONVERT AN INTEGER INTO AN *
390 CX* EQUIVALENT CHARACTER STRING. IT IS *
391 CX* THE FORTRAN 77 EQUIVALENT OF AN *

392 CX* "ENCODE" STATEMENT. *
393 CX* *

394 CX******** C A U T I 0 N
395 CX* *
396 CX* THE INTEGER ARGUMENT MUST BE INTEGER *
397 CX* AND LESS THAN 10**15. *

398 CX* *
399
400 CX
401 CHARACTER *(*) CHARA
402 CHARA - ' -

403 INTGR - I

404 L - 1
405 NP1O - 1
406 CX IF I IS A ONE DIGIT NUMBER, SAVE CALCULATION
407 CX TIME BY SKIPPING.
408 IF(INTGR .LT. 10) GO TO 10
409 CX PERHAPS I IS A TWO DIGIT NUMBER?
410 L - 2
411 NPIO - 10
412 CX SKIP IF THE NUMBER HAS ONLY TWO DIGITS.
413 IF(INTGR .LT. 100) GO TO 10
414 CX CALCULATE THE NUMBER OF DIGITS (L-I) ONLY
415 CX IF THE NUMBER IS GREATER THAN 99.
416 L - IFIX(ALOG1O(FLOAT(INTGR)))
417 NP1O - 10 ** (L-i)
418 CX
419 CX NOW, PACK THE DIGITS INTO CHARA BEGINNING WITH
420 CX THE LEFT-MOST.
421 Cx
422 10 DO 15 IPOS = 1, L
423 M - INTGR / NPIO
424 CHARA(IPOS:IPOS) - CHAR(M + 16)
425 INTGR - INTGR - M * NP1O
426 NP1O - NP1O / 10
427 15 CONTINUE

428 RETURN
429 END

56

430 SibROUTINE RANSIZ(IFILE, IRECSI, J)
431
432 CX* *

433 CX* THIS SUBROUTINE IS THE EQUIVALENT OF *

434 CX* A HONEYWELL FORTRAN ROUTINE OF THE *

435 CX* SAME NAME. ITS FUNCTION IS TO OPEN *
436 CX* A DIRECT ACCESS FILE (TAPE# IFILE) *

437 CX* WITH THE CORRECT NUMBER OF RECORDS *

438 CX* PER RECORD (IRECSI). J - 0 IMPLIES A *
439 CX* FORMATTED FO4 OF FILE. J .NE. 0 IM- *

440 CX* PLIES AN UNFORMATTED, DIRECT ACCESS *
441 CX* FILE. *
442 CX* *

443 CX******** C A U T I 0 N ***************

444 CX* YOU HAD BETTER HAVE A LOCAL FILE bY *

445 CX* TilE NAME OF "TAPE(IFILE)". *

446 CX* *
447
448 CX INITIALIZE ERROR INDICATOR ISTAT.

449 ISTAT - 0

450 CX BEFORE OPENNING A FILE, IT MUST BE CLOSED
451 CX BUT ONLY CLOSE THE FILE IF RECL > 1

452 IF(IRECSI .GT. 1) THEN
453 CX FILE HAS BEEN OPENNED BEFORE SO
454 CLOSE(UNIT-IFILE,:IOSTAT=ISTAT, ERR-f0, STATUS-'KEEP)
455 ENDIF
456 CX ERR IS SPECIFIED TO FORCE THE PRINTING OF THE ERROR STATEMENT.
457 10 IF(ISTAT .EQ. 0) THEN
458 IF(J .EQ. 0) THEN
459 OPEN(UNIT-IILE, IOSTAT-ISTAT, ERR-20, ACCESS='SEQUENTIAL',
460 & FORM-'FORMATTED)
461 ELSE
462 OPEN(UNIT-IFILE, IOSTAT-ISTAT, ERR-20, ACCESS-'DIRECT',
463 & FORM-'UNFORMATTED', RECL-IRECSI)
464 ENDIF
465 20 IF(ISTAT .NE. 0) THEN
466 PRINT 22, ISTAT, IFILE

467 ENDIF
468 ELSE
469 PRINT 12, ISTAT, IFILE
470 ENDIF
471 RETURN
472 12 FORMAT(o CLOSE ERROR # -,13,- WITH TAPE o,12)

473 22 FORMAT(' OPENNING ERROR # -,13,- WITH TAPE -,12)

474 END

57

475 SUBROUTINE READBU(N, CHAR)
476 CX
477
478 CX AUTHOR: ANTHONY WAISANEN C

479 CX CAPT USAF C
480 CX
481 CX THE PURPOSE OF THIS SUBROUTINE

482 CX IS TO CHECK IF THE FIRST CHARACTER OF
483 CX CHAR IS A '0". IF IT IS,
484 CX N IS SET TO ZERO. IF NOT, N IS
485 CX SET TO 3.
486
487 CX

488 CHARACTER *(*) CHAR
489 N - 3
490 IF(CHAR(1:1) .EQ. 0') N- 0

491 RETURN
492 END

58

493 SUBROUTINE SETB(ISET,ISETD,MIN,IST,LST,ISTAT,INC,ON)
494 C ROUTINE TO SET BITS IN ISET CORRESPONDING TO NUHBERIC INPUT.
495 C YODIS 13 JUL 7b
496 C PIERCE MODIFIED 5 DEC 79
497 CX WAISANEN MODIFIED MAR L982
498 C
499 LOGICAL ON
500 CX DIMENSION ISET(ISETD)
501 CHARACTER*36 ISET(*)
502 CX
503 C
504 JNUM-O
505 IF(ON)JNUM-1
506 IF(.NOT.(IST.GT.LST))GO TO 90
507 C THEN FIX
508 M-IST
509 IST-LST
510 LST-M
511 90 CONTINUE
512 C ENDIF
513 DO 110 NUM-IST,LST,INC
514 IBIT-NUM-MIN
515 JBIT-MOD(IBIT,36)
516 SWRD-IBIT/36+1
517 IF(JWRD.GT.ISETD)ISTAT-5
518 IF(.NOT.(ISTAT.EQ.99))GO TO 100
519 C THEN SET BITS.
520 CX FLD(JBIT,I,ISET(JWRD))-JNUM
521 CALL FLD2(JBIT,1,ISET(JWRD),JNUM)
522 100 CONTINUE
523 C ENDIF
524 110 CONTINUE
525 C ENDDO
526 INC-I

527 RETURN
528 END

59

529 SUBROUTINE SETBIT(IWORD, IBIT, ISW)
530
531 CX* *

532 CX* THE PURPOSE OF THIS SUBROUTINE *

533 CX* IS TO SET BIT # ILIT OF IWORD TO 1 *

534 CX* IF ISW - I AND BIT # IBIT OF IWORD TO*
535 CX* O IF ISW -O. *

536 CX* 1 .LE. IBIT .LE. 36. *
537 CX* *
538 CX******** C A U T I 0 N
539 CX* *
540 CX* IWORD MUST IE 36 CHARACTERS LONG. *

541 CX* ISW - 0 OR 1 AND O < IBIT < 37 *

542 CX* *
543
544 CX

545 CHARACTER*36 IWORD
546 CX CHECK THE VALIDITY OF ISW AND IBIT
547 IF(ISW .EQ. 0 .OR. ISW .EQ. I .AND.
548 & IBIT .GE. 1 .AND. IBIT .LE. 36) THEN
549 CX ISW AND IBIT IS VALID
550 CX SET CORRECT CHARACTER (-BIT-) OF IWORD

551 IF(ISW .EQ. 1) IWORD(IBIT:IBIT) - '1'
552 IF(ISW .EQ. 0) IWORD(IBIT:IBIT) - '0'
553 ELSE
554 CX ERROR PROCESSING SECTION

555 PRINT *,' ERROR IN SUBROUTINE SETBIT -

556 ENDIF

557 RETURN
558 END

60

559 C *#RUNH *=;FKADYO9/DO70/FKADYL6/OBJECT/SEQIN(NOGO)

560 SUBROUTINE SEQIN(BUFIIP,ISET,IDIMMAXMIN,ISTAT)
561 C ROUTINE TO DECODE A NUMERIC INPUT STRING OF THE FORM:
562 C -1,2,4-6,10,...- AND SET CORRESPONDING BITS OF ISET.
563 C YODIS 14 JUL 78
564 C MODIFIED 14 DEC 78 BY: LT HARBICK
565 C BELLS AND WHISTLES ADDED 4 DEC 79 BY CAPT ROGER C PIERCE

566 CX IMPROVED TO WORK ON A CDC MARCH L982 CAPT ANTHONY WAISANEN
567 C
568 CHARACTER BUFf*80

569 C
570 CHARACTER *15 CHARS
571 CX DIMENSION ISET(IDI)
572 CHARACTER*36 ISET(*)
573 CX
574 LOGICAL DASH,ON,COMMA
575 C
576 C
577 CX
578 DATA CHARS/'0123456789-, AB'/
579 CX
580 ISETD-IDIM

581 DASH-.FALSE.
582 NUM-O
583 IBLANK-O
584 IOFFSE-IP-1
585 IP=IP-l
586 ISTAT-99
587 ON-.TRUE.
588 INC-i
589 COMMA-.TRUE.
590 C
591 C DOUNTIL (IP.GE.80 .OR. ISTAT.NE.99)
592 100 CONTINUE

593 IP-IP+1
594 ICHAR-16
595 DO 110 ICH-1,15

596 JCH-ICH
597 IF(KOMPCH(BUF1,IP,CHARS,JCH,1).EQ.O) ICHAR - JCH
598 110 CONTINUE
599 C ENDDO
600 IF(ICHAR.GE.1 .AND. ICHAR.LE.10)ICTYPE-1
601 IF(ICHAR.GT. 1O)ICTYPE-ICHAR-9

602 C CASE ENTRY
603 GO TO (120,130,150,170,190,220,320)ICTYPE
604 C CASE 1. BUFL*IP IS A DIGIT.
605 120 CONTINUE
606 NUM-NUM*10+ICHAR-1

607 COMiA-.FALSE.
608 GO TO 330

61

609 C CASE 2. BUF1*IP IS A DASH.

blO 130 CONTINUE
611 IF(NLJM.LT.NIN)ISTAT-4
612 IF(NUH.GT.MAX)ISTAT-3
613 IF(CO.'lA)ISTAT-6
614 IF(KOMPCH(BUF1,IP+1- -,1,1).EQ.O)ISTAT-6
615 IF(IP.EQ.1)ISTAT-6
616 IF(DASI)ISTAT-o
617 IF(.NOT.(ISTAT.EQ.99))GO TO 140
618 C THEN SET 1ST DO PARAM AND DASH FLAG.

619 DASH-.TRUE.
620 ISTNUM-NUlJN
621 NUM-0
622 140 CONTINUE
623 C ENDIF
624 COMiA-.FALSE.
625 GO TO 330
626 C CASE 3. BUFI*IP IS A COMM'A.
627 150 CONTINUE
628 IF(NUM4.LT.MIN)ISTAT-4
629 IF(NUM.GT-aIAX)ISTAT-3
630 IF(.NOT.(NUM.EQ.O.AND..NOT.DASH))GO TO 155

631 C THEN ZERO VALUE TERMINATES STRING
632 ISTAT-O
633 LENIN-IP-1
634 155 CONTINUE
635 C ENDIF
636 IF(KOMPCH(BUF1,IP+1,- ,1,1).EQ.O)ISTAT-6

637 IF(COMA)ISTAT-6
638 IF(IP.EQ.1)ISTAT-6
639 IFC.NOT.CISTAT.EQ.99))GO TO 160

640 C THEN SET LAST DO PARAM AND SET BITS.
641 LSTNUM-NUM
642 NUM-O

643 IF(.NOT.DASH)ISTNUM-LSTNUM

644 DASH-.FALSE.
645 CALL SETB(ISET,ISETD,MIN,ISTNUM%,LSTNUM,ISTAT,INC,ON)
646 160 CONTINUE
647 C ENDIF
648 COMM9A-.TRUE.
649 GO TO 330
650 C CASE 4. BUF1*IP IS A SPACE.
651 170 CONTINUE
652 IBLANKmIBLANK+1
653 IF(.NOT.(IBLANK.EQ.(IP-IOFFSE)))GO TO 175
654 C THEN CHECK TO SEE IF LEADING BLANK LIMIT EXCEEDED
655 IF(IBLANK.EQ.4)ISTAT-1
656 GO TO 177
657 C ELSE PROCESS AS END OF STRING

658 175 CONTINUE

62

659 IF(NULNI.LT.MIN)ISTAT-4

660 IF(NUel.GT.M4AX)ISTAT-3
661 IF(NUN,.EQ.O.AND. .NOT.DASHi)ISTAT-O
o62 IF(.NOT.(ISTAT.EQ.99))GO TO 180

663 c THEN SET LAST DO PARAM AND SET BITS.
664 LSTNUM-NUH
665 IF(.NOT.DASH)ISTNUM-LSTNUM

666 DASH-.FALSE.
667 CALL SETB(ISET,ISETD,A4IN,ISTNUM,LSTNUM,ISTAT,INC,ON)
668 ISTAT-O
669 180 CONTINUE
670 C ENDIF
671 177 CONTINUE

672 C ENDIF
673 GO TO 330
674 C CASE 5. BUFL*IP IS AN 'A"

675 190 CONTINUE
676 IF(.NOT.(KOMIPCH(BUFL,IP,-ALL-,1,3).EQ.O))GO TO 200

677 C THEN FILL ARRAY
678 ISTNUM=MIN
679 LSTNUM-AMX
680 CALL SETB(ISET,ISETD,MIN,ISTNUM,,LSTNUH4,ISTAT,INC,ON)
681 IP-IP+3
682 IF(KOMPCH(BUF1,IP-,,1,1).NE.O) ISTAT-6
683 IF(KOMPCH(BUFI,IP- -,1,1).EQ.0) ISTAT-O

684 CO TO 210
685 C ELSE ILLEGAL CHARACTER
686 200 CONTINUE

687 ISTAT-2
688 210 CONTINUE
689 C ENDIF
690 CONA-. TRUE.
691 GO TO 330
692 C CASE 6. BUF1*IP IS A 'B'
693 220 CONTINUE
694 IF(.NOT.(KOMPCH(BUF1,IP,-BUT,-,1,4).EQ.O.AND.CO ~iA))GO TO 230
695 C THEN TURN OFF ON
696 IFC.NOT.ON) ISTAT-8
697 ON-.FALSE.
698 IP-IP+3
699 GO TO 310
700 C ELSE CHECK FOR BY
701 230 IF(.NOT.(KOMPCH(BUF1,IP,-BY-,1,2).EQ.0AND.COM\MA))GO TO 290

702 C THEN CHECK FOR INCREMENT
703 INC-11
704 DO 240 ICH-1,10
705 JCH-ICH
706 IF(KOMPCH(BUF1,IP+2,CHARS,JCH,1).EQ.O)INC-JCH-1
707 240 CONTINUE

708 C ENDDO

63

709 IF(INC.EQ.O) INC-lO

710 IF(.NOT.(INC.EQ.11))GO TO 250
711 C THEN ERROR
712 ISTAT-7
713 IP-IP+2
714 GO TO 280
715 C ELSE CHECK FOR COMMA
716 250 CONTINUE
717 IF(.NOT.(KOMPCH(BUF,IP+3,-,°,1,1).EQ.O))GO TO 260
718 C THEN OK
719 IP-IP+3
720 GO TO 270
721 C ELSE DELIMETER ERROR
722 260 CONTINUE
723 ISTAT-6
724 270 CONTINUE
725 c ENDIF
726 280 CONTINUE
727 C ENDIF
728 GO TO 300
729 C ELSE ILLEGAL CHARACTER
730 290 CONTINUE
731 ISTAT-2
732 IF(.NOT.COMMA)ISTAT-6
733 300 CONTINUE

734 C ENDIF
735 310 CONTINUE
736 C ENDIF
737 COMMA-.TRUE.
738 GO TO 330
739 C CASE 7. BUF1*IP IS AN ILLEGAL CHAR.
740 320 CONTINUE
741 ISTAT-2
742 330 CONTINUE
743 C ENDCASE.
744 IF(.NOT.(IP.GE.8 .OR. ISTAT.NE.99))GO TO 100
745 C ENDDO
746 IF(ISTAT.EQ.4 .OR. ISTAT.EQ.3) IP-IP-1
747 RETURN
748 END

64

749 SUBROUTINE SLITE(LITE)
750
751 CX* *
752 CX* THE PURPOSE OF THIS SUBROUTINE *

753 CX* IS TO TURN ON A "SENSE LIGHT" WHICH IS*
754 CX* USED AS A FLAG IN THE MISSION INPUT *
755 CX* PROGRAMS TO INDICATE THE PRESENCE OF *

756 CX* ERRORS. *
757 CX* IF THE VALUE OF LITE IS 0, THEN ALL *
758 CX* SENSE LIGHTS ARE TO BE TURNED OFF. *

759 CX* IF THE VALUE OF LITE IS NOT 0, THEN *
760 CX* SENSE LIGHT # LITE IS TURNED ON. *
761 CX* THIS SUBROUTINE IS INTENDED TO *

762 CX* REPLACE SUBROUTINE SLITE AS DESCRIBED *
763 CX* ON PAGE 6-46 OF THE HONEYWELL FORTRAN *
764 CX* lMANUAL. *

765 CX* *
766 CX******** C A U T I 0 N
767 CX* *

768 CX* THE VALUE OF LITE MUST LIE BETWEEN *
769 CX* 1 AND 36 (THE NUMBER OF CHARACTERS IN *
770 CX* THE SENSE LIGHT WORD, LIGHT). *
771 CX* *
772
773 CX
774 CX DEFINE THE SENSE LIGHT WORD, LIGHT
775 COMMON /SENSE/LIGHT
776 CHARACTER*36 LIGHT
777 CX CHECK THE VALIDITY OF LITE
778 IF(LITE.GE.1 .AND. LITE.LE.35) THEN
779 CX LITE IS VALID SO OPERATE ACCORDINGLY
780 IF(LITE .LE. 0) THEN
781 CX TURN OFF ALL SENSE LIGHTS
782 LIGHT - '0'
783 ELSE
784 CX TURN ON LIGHT # LITE

785 LIGHT(LITE:LITE) - '1'
786 ENDIF
787 ELSE
788 CX ERROR HAS OCCURRED
789 PRINT 12,LITE
790 ENDIF
791 RETURN
792 12 FORMAT(IX,- ERROR IN SUAROUTINE SLITE. CALLED,
793 &' WITH LITE - ',I3)
794 END

65

pI

795 SUBROUTINE SLITET(LITE, K)
796
797 CX* THE PURPOSE OF THIS SU6ROUTINE *
798 CX* IS TO SENSE IF A "SENSE LIGHT" IS ON. *
799 CX* IF THE VALUE OF LITE IS 0, THEN AN *

800 CX* ERROR CONDITION EXISTS. K IS SET TO 0*
801 CX* AND AN ERROR MESSAGE IS PRINTED. *

802 CX* IF THE VALUE OF LITE IS NOT 0, THEN *
803 CX* SENSE LIGHT # LITE IS CHECKED. IF IT *
804 CX* WAS ON (-l), K - 1. IF IT WAS OFF *
805 CX* (-0), K - 2. THE LIGHT IS TURNED OFF *
806 CX* AND CONTROL RETURNS TO THE CALLING *
807 CX* ROUTINE. *
808 CX* THIS SUBROUTINE IS INTENDED TO *
809 CX* REPLACE SUBROUTINE SLITET AS DESCRIBED*
810 CX* ON PAGE 6-46 OF THE HONEYWELL FORTRAN *

811 CX* MANUAL. *
812 CX******** C A U T I 0 N *

813 CX* THE VALUE OF LITE MUST LIE BETWEEN *
814 CX* i AND 36 (THE NUMBER OF CHARACTERS IN *
815 CX* THE SENSE LIGHT WORD, LIGHT). *
816
817 CX
818 CX DEFINE THE SENSE LIGHT WORD, LIGHT
819 COMMON /SENSE/LIGHT
820 CHARACTER*36 LIGHT
821 CX CHECK THE VALIDITY OF LITE
822 IF(LITE.GEo. .AND. LITE.LE.35) THEN
823 CX LITE IS VALID SO OPERATE ACCORDINGLY
824 CX DEFINE A DEFAULT VALUE FOR K ("OFF" VALUE)
825 K - 2
826 IF(LIGHT(LITE:LITE) .EQ. '1') THEN
827 CX LIGHT WAS ON
828 K - i
829 CX NOW TURN IT OFF
830 LIGHT(LITE:LITE) - 'O'
831 CX ELSE
832 CX LIGHT WAS OFF SO USE DEFAULT VALUES.
833 ENDIF
834 ELSE
835 CX ERROR HAS OCCURRED
836 PRINT 12,LITE
837 K - 0
838 ENDIF
839 RETURN
840 12 FORMAT(1X,* ERROR IN SUBROUTINE SLITET. CALLED-,
841 & WITH LITE - -,13)
842 END

66

843 C *#RUSH *-;FKADY01/CSTR/TWXLIB/CLDbLUJ(NOGO)
844 SUBROUTINE TBLF(NAC,LOPT,BSTAT,TW"LF)
845 C
846 C BLALOCK: 17 APRIL 79
847 C COMPUTE SORTIE SCALE FACTOR FROM BASE STAT AND LOAD FACTOR
848 C
849 X-FLOAT(NAC)/(FLOAT(LOT)+I.OE-20)
850 Xl-AMAXL(0.O,X-BSTAT)
851 Cli0.5*Xl
852 C2-1.5*Xl
853 TWXBLF-(AMIN1(X,BSTAT)+Cl*EXP(-C2))/AMAXI(1.OE-2OX)
854 RETURN
855 CX END
856 Cx
857 CX THE FOLLOWING SUBROUTINE HAS BEEN DETERMINED
858 CX TO BE UNNECESSARY. THEREFORE, IT HAS SEEN DELETED AND
859 CX REFERENCES TO IT HAVE BEEN MODIFIED TO 'TBLF'.
860 C *#RUNH *=;FKADYO1/CSTR/TWXLIB/CLDBBUJ(NOGO,BCD)
861 CX SUBROUTINE TBBLF(NAC,LOPT,BSTAT,TWXBLF)
862 C
863 C BLALOCK: 17 APRIL 79
864 C COMPUTE SORTIE SCALE FACTOR FROM BASE
865 C STAT AND LOAD FACTOR
866 C
867 CX X-FLOAT(NAC)/(FLOAT(LOPT)+l.OE-20)

868 CX Xl-AMAX1(O.O,X-BSTAT)
869 CX Cl-O.5*XI
870 CX C2-1.5*X1
871 CX TWXBLF-(AMIN1(X,BSTAT)+Cl*EXP(-C2))/A1,IAX1(1.0-20,X)
872 CX RETURN
873 END

67

874 C *,/RUNH *-;FKADY01/CSTRINXLIB/CLDDBUJ(NOGO,BCD)

675 SUBROUTINE TDATLI1(DATETI)
876 C

877 C **TkIIS ROUTINE RETURNS A 16 CHARACTER DATE TIMiE FIELD FOR

878 C **PRINTOUT OF THE FOi4 'YY MMM DD HI:mNt

879 C "*AUTHOR: ABBOTT DATE: 12 DEC 77

880 CX **MODIFIER: WAISANEN 2 DEC 81

881 C
882 CX THIS SUBROUTINE HAS BEEN MODIFIED FOR THE

883 CX CYBER/CDC IAINFRA&RE

884 CHARACTER DATETI*16,DATE*8 ,NON(1I2)*3 ,rOUR*2 ,,-IN*2

885 DATA MON,-JAN, ,FEB,(AR,APR,-,AY,JUN,JUL,'AUG',SEP)

886 & OCT,NOV-,DEC-/

887 C
888 CALL DATIM(DATE,TIME)
889 CX
890 CX ORIGINAL CODING
891 CX DECODE(DATE,500),\ONTH

892 CX EQUIVALENT FORTRAN 77 CODING

893 READ(DATE,500)MONTI
894 CX

895 DATETI- -

896 CALL CONCAT(DATETI,1,DATE,
7,2)

897 CALL CONCATCDATETI,4,HON(ONTI) ,1.,3)

898 CALL CONCAT(DATETi,8,DATE,
4,2)

899 CX
900 IlL-TIME

901 IMU(TIME-FLOAT(IH))*60.O
902 CX
903 CX ORIGINAL CODING

904 CX ENCODE(IIOUR,50
0)IH

905 CX ENCODE(MIN,502)IM/10
906 CX ENCODEG4IIN,501)IM-IM/10*lO

907 CX EQUIVALENT FORTRAN 77 CODING

908 CX
909 WRITE(HOUR,500)IH

91.0 WRITE(MIN,502)IM/10

911 WRITE(MIN,501)It-IH/1O*1O

912 CX

913 CALL CONCAT(DATETI,12,HOUR,1,2)

91.4 CALL CONCAT(DATETI,14,:-,l,l)
915 CALL CONCAT(DATETI,15,MIN,1,

2)

91.6 CX
917 RETURN
918 500 FORMAT(12)

919 501 FORkIAT(T2,11)

920 502 FORMAT(T1,IL)
921 CX END

922 CX

IF923 C *#RUNH *-s;FKADY1/CSTR/WXLIB/CLDDTUJ(NOGO)

68

924 CX
925 CX THE FOLLOWING SUBROUTINE HAS BEEN DETERMINED
926 CX TO BE UNNECESSARY. THEREFORE, IT HAS BEEN DELETED AND
927 CX REFERENCES TO IT HAVE BEEN MODIFIED TO 'TDATIM'.
928 CX SUBROUTINE TBDATLI(DATETIM)
929 C
930 C **THIS ROUTINE RETURNS A 16 CHARACTER DATE TIME FIELD FOR

931 C **PRINTOUT OF THE FORM 'YY t*Il DD Hd:MMH
932 C **AUTHOR: ABBOTT DATE: 12 DEC 77
933 C
934 CX CHARACTER DATETIM*16,DATE*8,HON*3(12),HOUR*2, IN*2
935 CX DATA ON/'JAN',-FEB','MAR','APR','NAYo,'JUN',oJULO,'AUG',oSEP-,

936 CX & OCToNOV-,DECo/
937 C
938 CX CALL DATIM(DATE,TLIE)
939 CX DECODE(DATE,50O)MONTH
940 CX DATETIM-' '
941 CX CALL CONCAT(DATETDI,1,DATE,7,2)
942 CX CALL CONCAT(DATETIM,4,MON(MONTH),1,3)
943 CX CALL CONCAT(DATETIM,8,DATE,4,2)
944 CX IH-TIME
945 CX IM-(TIME-FLOAT(IH))*60.O
946 CX ENCODE(HOUR,500)IH
947 CX ENCODE(MIN,502)IM/1O
948 CX ENCODE(MIN,5O1)IMVIM/1O*1O
949 CX CALL CONCAT(DATETIM,12,HOUR,1,2)
950 CX CALL CONCAT(DATETM,14,o:o,1,1)
951 CX CALL CONCAT(DATETIM,15,MIN,1,2)

952 CX RETURN
953 CX500 FORMAT(12)
954 CX501 FORMAT(T2,I1)
955 CX502 FORNAT(Tl,I1)
956 END

69

957 SUBROUTINE TERMNO(CHAR)
958
959 CX AUTHOR: ANTHONY WAISANEN C
960 CX CAPT USAF C
961 CX
962 CX THE PURPOSE OF THIS SUBROUTINE
963 CX ORIGINALLY WAS TO RETURN THE 2 CHARACTER
964 CX "NAUE" OF THE TERMINAL BEING USED.
965 CX THE ORIGINAL SUBROUTINE WAS A
966 CX HONEYWELL SYSTEM ROUTINE. THERE IS
967 CX NO ANSII STANDARD ROUTINE.
968 CX THIS, THEN, IS A DUMMY.
969
970 CX
971 CHARACTER*2 CHAR
972 CHAR - '77"
973 RETURN
974 END

70

975 CX *#RUNHj *-;FADYO1/CSTR/TWXLI]B/CLDLTUJ(NOGO,BCD)
976 CX SUB~ROUTINE TLETTER(LINES,LETTERS,STRING,IFC)
977 SUBROUTINE TLETTE(LINES,LETTER,STaING, IFC)
978 C
979 C BLALOCK: MODIFIED 10 DEC 77
980 C NUMIERIC - CHARACTER CONVERSION & PRINT
981 C
982 G
983 LNIPLICIT INTEGERCA-Z)
984 DIENSION MAP(100),STRING(18,LINES)
985 C1IARACTER*1 X,INDX(32)
986 CHARACTEX*7 SYNB(100)
987 CdiARACTER*5 BINY(32),PRNT(7,18)
988 DATA INDX/ ,1,2,3,4 , 7 8 9 A ,C',
989 & D ' F, H(. K, M N 0 P,
990 & QRST, ll/
991 DATA BINY/' -,- * -,-*-,* *-

992 & ** , *,* -,* ,-*-- * ,**,

993 & -**- **-,- * * *,-**,*

994 & ***-**-***- * ** *** *

995 & -** *** **

996 DATA SYMB/ERPLHE-,-464444E-,aEHGE11V ,oEHGCGE,-8CA9VB88,
997 &-V1FGCHEa,C21FHHE(,VG84222,EHHEHHEHUG86-EHHVikIH-,
998 &-FIIEIIF-,EH1IlRE ,F11111F-,-Vl1Fl1V ,V11F11-,-U11THHE-,
999 &aHHHVHHH,E44444EGGGGHE-,H95359H-,111111V(,HRLLHH,

1000 &oHJLPHHH-,VHRIiHV-,FIHF1IV,EflflL9,,FH8F59W,-EH248HE-,
1001 &-V444444-,HHHHHHE-,HHAA44-,-HHLLL,RA4AHi,1HA4444',
1002 -VG8421V,OARORAO,EHGMILD3-,2552L9Ml,00OV0V00(0-4EVE40-,
1003 &-3J842P-,-4AH000o,-EH84404-,044V440-,01248G00,0G84210-,
1004 &000OV000-,0000066-,0006642(,6606642-,0660660-,7444447-,
1005 &-S44444S-,G84248G-,1248421o,124442V,-G84448Ga,8420000-,
1006 &-6666066o,4444444-,VVVVVVV(,0000000-,AA00000o,ELSEKLE-,
1007 &-S0M9996-,EHHE4E4-,8088896a,1195359-,4444444-,OOALLLL-,
1008 &-OODJHHH ,OOEHHHE(,OOFHF11I,'00E9E80,00DJ111-,00E1687-,
1009 &-22F22IC ,0099994' ,OOIHLLAa,00HA4A1 ,oOOHHUGE (oOOHHHA4-,
1010 &00OV842V-,006999M-,-1DJHJDo,OOEI1HE-,GGMPHPM(o~OOEHVlE-,
1011 &-04U4444-,00E9E86-,IlDJ{R1,-4044444-,000000Vo,002V200-,
1012 &-8442448-,2448442-,00QDOOO0,2*- I/
1013 DATA MAP/ 60, 61, 62, 63, 64, 65, 66, 67, 70, 71,101,102,103,104,
1014 &105, 106,107,110,111,112,113,114,115,116,117,120,121,122,123,124,
1015 & 125,126,127,130,131,132, 43,100, 46, 75, 52, 45,136, 77, 53,
1016 & 134, 57, 55, 56, 54, 73, 72,135,133, 74, 76, 51, 50, 47, 41,
1017 & 174,200, 40, 42, 44,201,202,152,153,154,155,156,157,160,161,
1018 & 162,163,164,165,167,170,171,166,172,141,142,143,144,145,146,
1019 & 147.150,151,137,140,173,175,176, 2*0/
1020 DATA X/- /,D1FAUL/63/,D2FAUL/1/
1021 C
1022 Do 400 L-1,LINES
1023 DO 300 N-1,LETTER
1024 SEED-DlFAUL

71

I

1025 DO 100 K-I,100

1026 IF(STRING(N,L).EQ-HAP(K)) SEED-K

1027 00 CONTINUE

1028 DO 200 H-1,7

1029 -XwH

1030 CALL CONCAT(X,1,SYhLB(SEED),HX,I)

1031 iL-D2FAUL

1032 DO 150 NI-1,32

1033 IF(X.EQ.INDX('4)) WC-3

1034 150 CONTINUE

1035 PRNT(H,N)-BINY(X)

1036 200 CONTINUE

1037 300 CONTINUE

1038 DO 350 H-1,7

1039 WRITE(IFC,600) (PRNT(H,N),N-I,LETTER)

1040 350 CONTINUE

1041 WRITE(IFC,601)

1042 400 CONTINUE

1043 RETURN

1044 bOO FORMAT(X,18(A5,
2X))

1045 601 FO&MAT(/I)
1046 END

72

1047 SUBROUTINE UPRCAS(N, M)
1048
1049 CX* *

1050 CX*' THIS IS A DUANY SUBROUTINE. IN THE *
1051 CX* HONEYWELL SYSTEM, IT CONVERTS A LOWE& *
1052 CX* CASE STRING OF M CHARACTERS, N, INTO *
1053 CX* AN EQUIVALENT UPPERCASE STRING, ALSO *
1054 CX* N. SINCE ASCII ONLY USES UPPERCASE, *
1055 CX* THIS SUBROUTINE HAS NO FUNCTION OTHER *
1056 CX* THAN TO INDICATE WHERE THE ORIGINAL *
1057 CX* TWX DATA HAD TO BE CONVERTED. *
1058 CX* *
1059 CX******** C A U T I 0 N ***************

1060 CX* *
1061 CX* THERE ARE NO CAUTIONS ASSOCIATED WITH*
1062 CX* THIS SUBROUTINE. *
1063 CX* *
1064
1065 CHARACTER *(*) N
1066 RETURN
1067 END

73

Appendix C

Seantation Procedure File Listings

-74-

1 *PROC,APESEG,FYLE-APE.

2 .~THIS PROCEDURE FILE CREATES A SEG14ENTED OBJECT
3 .~DECK AND CATALOGS IT AS "APELGO."
4 .~THE SOURCE DECK *FYLE" MUST BE THE SOURCE DECK
5 **FOR THE AAFCE PLANNING PROGRAM.
6 MAP,OFF.
7 RETURN, KNUJ.
8 ATTACH,KNUJ,APELGO,IDT800855,PW-FOX.
9 .* SKIP IF NOT CATALOGED

10 SKIP,NONE.
11 EXIT,S.
12 ENDIF,NONE.
13 .* CONTINUE FROM HERE
14 REW IND, FYLE.
15 FTN5,1=FYLE,LOinO,B=APEB.
16 .* CHECK FOR ThJXLIB PRESENCE

17 IFE,FILE(ZZZZZLW,LO.OR.PF).NE.1,GET1.
18 .* NOT HERE, SO AUST GET IT
19 ATTACH,ZZZZZLW,1V4XLIB,ID-T800855,CY-1.

20 ENDIF,GET1.
21 .* DECLARE IT AND THE UEDIT LIBRARY
22 LIBRARY(ZZZZZLW ,ZZZZZLA)
23 RETURN,SEGLGO.
24 REQUEST,SEGLGO,*PF.
25 SEGLOAD(I-DIRS ,B-SEGLGO)
26 LOAD(APEB)
27 NOGO.
28 .*' RECALL THE LIBRARIES

29 L.IBRARY(ZZZZZLA, ZZZZZLB)
30 CATALOG,SEGLGO ,APELGO, ID-T800855,XR=FOX,PW-FOX.
31 PURGE,KNUJ.
32 RENAME, SEOLGO ,CY-1.

33 RETURN,KNUJ ,SEGLGO.
34 RETURN,DIRS,APEB.

35 .~NO MATTER WHAT
36 EXIT,S.
37 LIBRARY(ZZZZZLA, ZZZZZLB)
38 RETURN,DIRS,APEB.
39 REVERT.

75

40 .DATA,DIRS.
41
42 * MJOR TREE APE
43 TREE APE-(IPT,OPTT,RAPUP)
44 INCLUDE UTLLIN,BLKDAT
45
46 *SUiSTREE IPT (FILE INITIALIZATION)
47 IPT TREE PI-(PIRNS,PIDS-PIDAYS,PAC,PAB,PIM1U,PILitEC)
48 PI INCLUDE UTBLF
49*
50 *SUBTREE OPTT (OPTION HANDLING ROUTINES)
51 OPTT TREE OPTN-(DPT,IPRC1,IPAG1,IPRS1,1PIV1,LAT)
52 OPTN INCLUDE UTIkNEO,UTLLIN,UTM4LEF
53*
54 * SUB-SUi3TREE DPT (DISPLAY ROUTINES)

55 OPT TREE DP-(DP12,DPAG,DPTS-DPTSOT,DP13,DPDR)
56 DP INCLUDE DPACIN,DPSETB,DPABNO
57
58 * SUBTREE OF DPT
59 DP12 TREE DPBD-(DP2,DPEDOT)
60 DP2 TREE DPACIN-DPACNA
61 OPACIN INCLUDE DPSETb
62*
63 * ANOTHER SUBTREE OF DPT
64 DP13 TREE DPBL-(DP3,DPBLOT)
65 DP3 TREE DPLGIN-DPLCNA
66 DPLGIN INCLUDE DPSETB
67*
68 * SUB-SUBTREE IPRC1
69 IPRC1 TREE IPRC-(IPRCED-IPRCHiC,IPRCUP)
70 IPRC INCLUDE IPCHEC,UTNU,4,UTflIEO,UTLLIN,UT1LEF
71*
72 * SUB-SUBTREE IPAG1
73 IPAGi TREE IPAG-(IPAGED,IPAGUP)
74 IPAG INCLUDE UTBLF ,UTNUi42UTIEO,UTLLIN,UThILEF, IPCHEC
75
76 * SUB-SUBTREE IPRS1
77 IPRSI TREE IPRS-(IPRSED,IPRSUP)
78 IPRS INCLUDE IPCkLEC,UTNUM4,UTIMEO, UTLLIN,UTMiLEF
79
80 * SUB-SUBTREE IPIV1
81 IPIVL TREE IPIV-(IPIVED,IPIVCR,IPIVUP)
82 IPIV INCLUDE IPCHEC,UTNUMi,UTIMEO, UTLLIN,UTH1LEF
83
84 * SUI3-SUBTREE LAT
85 LAT TREE LA-(LAATAF,LA12,LA22)
86 LA INCLUDE LAIN 1IS,IAWXSC,LAOTCA
87
88 * SUBTREE OF LAT
89 LA12 TREE LAIN-(LANXQv1,LA1)

76

909

90 *

91 * SUSTREE OF LA12
91 LA. TREE LAINED-(LAINAC,LAINSR)

93 *

94 * SUBTREE OF LAT
* 95 LA22 TREE LAOT-(LAOTGR,LA2,LAOTPR)

96 *
97 * SUBTREE OF LA22

93 LA2 TREE LAOTAB-LAOTNO
99 LAOTAB INCLUDE LAOTSE

100 *

101 * CObMON BLOCK DECLARATION
102 COMMON ABDATA,ABLF ,ACDATA, CTRL, I0, IOCH,

103 ,LAINB,LAINBC,LAIOBU,LAOTG,LAOThU,LGDATA,LSTGD, MSNS,
104 ,NAMES, POLSPR
105 *

106 * APE DECLARED TO BE ENTRY POINT
107 END APE

77

10.3 PROC,LISEG,FYLE-LI.
109 RETURN,KNUJ.
110 ATTACH) KNUJ ,LILGO,ID-T800855 ,PW-FOX.
i1l SKIP,WHERE.
112 EXIT,S.
113 ENDIF,WHERE.
114 REWIND,FYLE.

115 FTN5,I-FYLE,6mLIB,*LO-0 ,Dk5-0.
116 ** CHECK FOR TWXLIB PRESENCE
117 IFEFILE(ZZZZZLW4,LO.OR.PF).NE.1,GET1.
118 ** NOT tiERE, SO MUST GET IT
119 ATTACH,ZZZZZLW ,TWKLIB ,ID.T800855,CY-1.
120 ENDIF,GET1.
121 **DECLARE IT AND THlE IJEDIT LIBRARY
122 LIBRARY(ZZZZZLW ,ZZZZZLA)
123 RETURN,SEGLGO.
124 REQUEST,SEGLGO,*PF.
125 SEGLOAI2(I-DIRS,B-SEGLGO)
126 LOAD(LIB)
127 NOGO.
128 CATALOG,SEGLGO ,LILGO, ID-T800855,PW-FOX,XR-FOX.
129 PURGE,KNUJ.
130 SKIP ,NO.
131 EXIT,S.
132 ENDIF,NO.
133 RENAME,SEGLGO,CY-1.
134 RETURN,DIRS,XECUTE,KNUJ,SEGLGO.
135 ** RECALL THE LIBRARIES
136 LIBRARY(CZZZZZLA, ZZZZZLB)
137 ** NO MATTER WHAT
138 EXIT,S.
139 RETURN,DIRS,XECUTE.
140 LIBRARY(ZZZZZLA, ZZZZZLB)
141 REVERT.

78

142 .DATA,DIRS.

143 TREE LI-(LINt:KA,OPTREE,URAP)

144
145 LI INCLUDE BLKDAT

146 *
147 LINKA TREE PI-(PIAC,PIATCki,PIL

l ,

148 ,PILO-(PILOPS-PILOCO),

149 ,PILOSE,PILOSI,PINIT,PIARST)
150 *

151 PINIT INCLUDE DATIM,FLD2,FP,RANSIZ,UTINAC,UTINCi,

152 ,UTINDA,UTINOR,UTINTG,UTINUT
153 *

154 OPTREE TREE OPTN-(LINKB,LINKC,LINKD,LINKE)

155 *

156 OPTN INCLUDE UTUELP

157 *

158 LINKB TREE DISPLA-(DISPDA,DISPPR,DISPUN-(DISPWX'DISPSV),

159 ,DISPMI,DISPAC,
160 ,DISPTG-(DISPTU,DISPTC,DISPTQ),

161 ,DISPAM,DISPAD,DISPRE)
162 *

163 DISPLA INCLUDE UTHELP

164
*

165 DISPAC INCLUDE CONCAT,DATL,DISPWA,UTACVD,UTTOKE

166 *

167 DISPAD INCLUDE DATIZI,DISPWA

168 *

169 DISPAM INCLUDE DATIM,DISPWA,UTHELP

170 *
171 DISPDA INCLUDE DATIM,DISPWL,UTHELP

172 *

173 DISPMI INCLUDE DATIM,DISPWL,UTHELP

174 *
175 DISPRE INCLUDE CONCAT,DATIM,DISPWA,DISPWL,FLD,

176 ,FLD2,ILLEGASEQIN,UTHASH,UTHELP
177 *

178 DISPTG INCLUDE CHKSIT,CONCAT,DATLfl,DISPWA

179 *
180 DISPTC INCLUDE CONCATILLEGA,SEQIN

181 *

182 DISPTQ INCLUDE CONCAT,ILLEGAUTCOINUTTOKE

183 *

184 DISPTU INCLUDE CONCATILLEGA,SEQIN

185 *
186 DISPWX INCLUDE DISPWL

187 *

188 LINKC TREE MODIFY-(MODDEL-MODDCH,CHGTREE)

189 *

190 MODIFY INCLUDE ILLEGA

191 MODDEL INCLUDE FLD2

79

192 *

193 *
194 CHGTREE TREE MODCHG- (MODWT1 ,M0DWT2 ,tODWT3,
195 ,%IODACF,MODCOR,,IODCYC,IODDAY,MODPRI, ,iODQNT,
196 , XODTGT,MODTUT,,IODFUT, ODURQ,MODLLQ)
197 *

198 MODACF INCLUDE CONCAT,UTACVD,UTTOKE
199 *
200 MODCOR INCLUDE CONCAT,UTCOIN,UTTOKE
201 *

202 MODCYC INCLUDE UTDAVD
203 *
204 MODDAY INCLUDE CONCAT,UTCOIN,UTDAVD,UTTOKE

205 *
206 MODPRI INCLUDE CONCAT,UTCOIN,UTTOKE
207 *
208 MODQNT INCLUDE UTQUAN
209 *
210 MODTGT INCLUDE CONCATFLD,UTCOIN,UTTOKE

211 *
212 MODTUT INCLUDE CONCAT,UTCOIN,UTERR,UTTOKE
213 *
214 MODFUT INCLUDE CONCAT,UTCOIN,UTDAVD,UTERR,UTTGVD,UTTOKE
215 *
216 MODURQ INCLUDE CONCAT,UTCOIN,UTTOKE
217 *
218 MODLLQ INCLUDE CONCAT,UTCOIN,UTTOKE
219 *
220 LINKD TREE LANDIN-(LAATK,LADEF,LALAY,LAMIOV,LAREI,LAWIT)
221 *
222 LAATK INCLUDE CONCAT,FLD,KONPCH,LATGVDLAUTCD,
223 ,UTABRT,UTCHK,UTCOIN,UTDAVD,UTDEC,UTERR,UTHASH,UTHELP,
224 ,UTINCH,UTTGVD,UTTOKE

225 *
226 LADEF INCLUDE CONCATFLD,KOMPCH,LATGVDLAUTCD,
227 ,UTABRT,UTCHK,UTCOIN,UTDAVD,UTDEC,UTERR, UTHASH,UTHELP,
228 ,UTINCH,UTTGVD,UTTOKE
229 *
230 LALAY INCLUDE CONCAT,FLD,KOMPCH,LATGVD,LAUTCD,
231 ,UTABRT,UTCHK,UTCOIN,UTDAVD,UTDEC,UTERR,UTHASH,UTHELP,
232 ,UTINCHUTQUAN,UTTGVD,UTTOKE
233 *
234 LAMOV INCLUDE CONCAT,FLD,KOMPCHLATGVD,LAUTCD,
235 ,UTABRT,UTCHKUTCOIN,UTDAVD,UTDEC,UTERR,UTHASH,UTHELP,
236 ,UTINCH,UTTGVDUTTOKE
237 *
238 LAREI INCLUDE CONCATFLD,KOMPCHLATGVD.LAUTCD,
239 ,UTABRT,UTCHKUTCOINUTDAVD,UTDECUTERRUThASH,UTHELP,
240 ,UTINCH,UTQUAN,UTTGVD,UTTOKE
241 *

80

242 LAWIT INCLUDE CONCAT,FLD,KOMPCH,LATGVD,LAUTCD,

243 ,UTABRT,UTCILK,UTCOIN,UTDAVD,UTDEC,UTERR,UTHASH,UTHELP,
244 ,UTINCH,UTQUAN,UTTGVD,UTTOKE
245*
246 LINKE TREE AIRIN-(AIRPRI,AIRRES,AIRREC,AIRBAI,AIRCAS,AICYVD)

247 AIRIN INCLUDE UTHELP
248 *

249 AIRPRI INCLUDE CHKBIT,CONCAT,ILLEGA,SEQIN,UTHELP
250 *
251 AIRRES INCLUDE AICOVD,AIPIVD,CONCAT,UTABRT,UTACVD,UTCOIN,

252 ,UTHASH,UTINCH,UTQUAN,UTTOKE
253 *
254 AIRREC INCLUDE AIQDVDAIPIVDAITGVD,CONCAT,FLD,UTABRT,
255 ,UTACVD,UTCOIN,UTHASH,UTINCH,UTTOKE
256 *
257 AIRBAI INCLUDE AIPIVD,AITGVD,CONCAT,FLD,UTABRT,
258 ,UTACVD,UTCOIN,UTHASH,UTINCH,UTQUAN,UTTOKE
259 *
260 AIRCAS INCLUDE AICOVD,AIPIVD,CONCAT,UTABRT,UTACVD,UTCOIN,
261 ,UTHASH,UTINCH,UTQUAN,UTTOKE
262 *
263 AICYVD INCLUDE CONCAT
264 *
265 COWLMON
266 END LI

81

207 PROC ,HISEG, FYLEnMI,XiAPinOFF.
268 RETURN,LNUJ,LGO.
269 ATC,YKNUJ ,HILGO, ID-T800855, PW-FOX.
270 **SKIP IF NOT CATALOGED

271 SKIP,NUNE.
272 EXIT,S.
273 ENDIF,NONE.
274 ** CONTINUE FROM HERE

275 REWIND,FYLE.
276 #MAP-MAP.
217 FTN5,I-FYLE,B-MIBLO-O,DB-O.
278 ** CHECK FOR TWXLIB PRESENCE
279 IFEFILECZZZZZLW,LO.OR.PF).NE.1,GET1.
280 .* NOT HERE, SO HUST GET IT
281 ATTACH,ZZZZZLW,TWXLIB,ID-T800855,CY-1.
282 ENDIF,GET1.
283 **DECLARE IT AND THE UEDIT LIBRARY
284 LIBRARY(ZZZZZLW ,ZZZZZLA)
285 RETURN,SEGLGO.
286 REQUEST, SEGLGO,*PF.
287 SEGLOAD(I-DIRS,B-SEGLGO)
288 LOAD(HIB)
289 NOGO.
290 CATALOG,SEGLGO,MILGO, ID-T800855,PW=FOX,XR-FOX.
291 PURGE,KNJJ.
292 .~SKIP TO "EXIT,S." STATEMlENT IF FILE WAS NOT ATTACHED,
293 RENAME,SEGLOO,CY-1.
294 .* ALWAYS GO THROUGH THESE STATEMENTS
295 SKIP,NONE2.
296 EXIT,S.
297 ENDIF,NONE2.
298 RETURN,MIB ,DIRS,XECUTE,KNUJ,SEGLGO.
299 .'* RECALL THE LIBRARIES
300 LIBRARY(ZZZZZLA, ZZZZZLB)
301 .'* NO MATTER WHAT
302 EXIT,S.
303 RETURN,MI8 ,DIRS,XECUTE.
304 LIBRARY(ZZZZZLA,ZZZZZLB)
305 REVERT.

306 .DATA, DIRS.

307 *

308 * HAIN TREE
309 TREE tlI-(ASKIT,CHANGE,CYCINPT,CYFMTIT,
310 ,CYFlIT2T,CYFXT3T,CYFMT4T,CYPRPI,DAYINP,
311 ,DAYRAP,DELETE,ENTERT,INIT,INTERMT,
312 .MODIFYT,PRINTI,RESEQ,RESTAR)
313 *
314 MI INCLUDE CYOUT,CYPRP3,DAYOUT,ENCOD1,ENCOD2,ENCOD3,
315 ,ENCOD4,PRNTI,SLITE,SLITET

316 *
317 * TREE FOR LINK A (AKA "PI")
318 ENTERT TREE ENTER-(INTWX,SETREC)

319 *
320 ENTER INCLUDE DETACH,PRNT1
321 INTWX INCLUDE CHKSYS,RANSIZ
322 SETREC INCLUDE RANSIZ
323 *
324 *TREE FOR LINK B (AKA "RT")
325 INTERMT TREE INTERM-YNC
326 *
327 INTERM INCLUDE FLD2,PRNT1
328 RESTAR INCLUDE ARRAYS,BCDASC,CALCSO,CYPRP3,SLITE
329 *
330 * TREE FOR LINK C (AKA "DI")
331 CYCINPT TREE CYCINP-(CYCPRE-(INACMAA,INTGTT))
332 *
333 CYCINP INCLUDE CONCAT,ENCOD1,ENCOD2,ENCOD3,ENCOD4,

334 ,PRNTI,RPRNT
335 INACMA INCLUDE FLD2,SETBIT
336 INTGTT INCLUDE FLD2
337 CYCPRE INCLUDE FLD,SLITE,SLITET
338 CYPRP1 INCLUDE SLITE,SLITET
339 PRINTI INCLUDE PRNT1
340 *
341 *TREE FOR LINK D (AKA "F")
342 CYFHTIT TREE CYFMTI-(FMT1A-(CKNUMl,EDITIT))
343 *

344 CYFMT1 INCLUDE FLD,PRNT1,RPRNT
345 FMT1A INCLUDE BLNKOU,CKCMA1,CONCAT,DETACH,

346 ,ERR1,GREASE,SLITE,SLITET,UPDATE,UPRCAS
347 *

348 EDITIT TREE EDITI-(EDITAI,DECODI,EDITBI,
349 ,EDITC1,EDITDI)
350 EDITI INCLUDE CONCAT,ERR1,PRNTI,SLITE,
351 ,SLITET,UPRCAS
352 DECODI INCLUDE SLITE
353 EDITAI INCLUDE ICHKAC,SLITE,SLITET
354 EDITBI INCLUDE CHKACM,FLD2,SLITE,SLITET,SETBIT

355 EDITC1 INCLUDE SLITE,UPRCAS

83

356 EDITDI INCLUDE CHKTGH
357 *

358 * TREE fOR LINK E AKA "F2")
359 CYFMT2T T.EE CYFMT2-(i4T2A-(CKNUM2,EDIT4T))

360 *
361 CYFMT2 INCLUDE FLD,PRNTI,RPRNT
362 F 1T2A INCLUDE BLNKOU,CKCiIA1,CONCAT,DETACH,ERR1, GREASE,
363 ,SLITE,SLITET,UPDATE,UPRCAS
364
365 EDIT4T TREE EDIT4-(DECOD2,EDITC2)
366 EDIT4 INCLUDE EDITA2,EDITB2,FLD2,1CHKAC,SLITE,
367 ,SLITET,CHKACM,SET6IT
368 EDITC2 INCLUDE CHIKTGH,UPRCAS
369
370 * TREE FOR LINK F (AKA "F3")
371 CYFMT3T TREE CYF&tT3-(FMT3A-(CKNU?3,DECOD3,EDITC3))

372 *
373 CYFMT3 INCLUDE FLD,PRNTI,RPRNT
374 FMT3A INCLUDE BLNKOU,CHKACk1,CKCMIA1,CONCAT,EDITA2,EDITh2,

375 ,ERl,FLD2,GREASE,ICRKAC,RPRNT,PRNT1,SETBIT,SLITE,
376 ,SLITET,UPDATE,UPRCAS
377

378 * TREE FOR LINK G (AKA "F4")
379 CYFMT4T TREE CYFMT4-(FMT4A-(CNUi4,DECOD4,EDITC4T))
380 *

381 CYFMT4 INCLUDE FLD,PRNTI,RPRNT

382 FMT4A INCLUDE BLNKOrJ,CHKACH1,CKCi4Al ,CONCAT,EDITA2,EDITh2,
383 ,ERRI,FLD2,ICHKAC,GREASE,PRNTI,RPRNT,SETBIT,SLITE,SLITET,

384 ,UPDATE,UPRCAS
385 EDITC4T TREE EDITC4-(EDITD4,EDITF4)
386 EDITC4 INCLUDE CHKTGH,ERR1,FLD,PRNT,SLITE,SLITET

387 *

388 *TREE FOR LINK H (AKA "CH")
389 CHANGE INCLUDE FILESC,PRNT1,SLITE,UPRCAS
390 RESEQ INCLUDE SHUFFL
391 DELETE INCLUDE ARRAYS,CONCAT,EDITIC,FILESC,PRNTI,SLITE
392 *
393 * TREE FOR LINK I (AKA "PR")
394 ASKIT INCLUDE PRNT1
395 *

396 * TREE FOR LINK K (AKA "-O")
397 MODIFYT TREE MODIFY-(FMAT1R,FMAT2RFMAT3R, FMAT4R,FMATlW,
398 ,FMAT2W,FMAT3W,FklAT4W)
399 *
400 MODIFY INCLUDE ARRAYSL0ONCAT,EDITlC,PRNT1,SLITE,UPRCAS
401 *

402 *TREE FOR LINK L (AKA "WU")
403 INIT INCLUDE BCDASC,CALCSO,CALLSS,TERMNO
404 DAYRAP INCLUDE DETACHGREASE

405 *

84

406 FINISH OF SEGMENTATION

407 COM 1ON ACDATA, CONTRC,CONTRO,CYCLCCYCLE, CYCLEC,

408 , FILEDA,FLAGS,RADINREADIC ,SENSE,
SORDAT

409 END MI

410 .EOF

85

Appendix D

SE~TUP Listiml

ab-4

1. PROC.SETUP.

2 .*THE PURPOSE OF THIS PROCEDURE FILE IS TO
3 .*BUILD ALL LIBRARIES AND OBJECT DECKS NECESSARY
4 .~FOR THE TWX. THE LIBRARIES WILL BE CREATED

5 .~INTERACTIVELY WHILE THE OBJECT DECKS WILL
6 .~BATCHED.

7 **FIRST, THE JCL FOR THE BATCH JOB
8 .~IS SENT TO THE INPUT QUEUE.
9 &ETURN,KNUJ.
10 REQUEST,KNUJ,*Q.
11 REWIND,JOB.
12 COPY,JOB,KNUJ.
13 BATCH,KNUJ,INPUT,HERE.
14 RETURN,JOB.
15 .~NOW, THE LIBRARIES ARE BUILT AND
16 .*FILLED WITH THE NECESSARY DATA FILES.
17 BUILD, ID-BACKUP.
18 BUILD,ID-BATCHIN.
19 BUILD,ID-LqASTER.

20 BUILD, lD-PRINT.
21 G004.
22 00,2.
23 GO,3.
24 GET,CAKM,,D-TW.XDATA.
25 SAVE, CAKM1-CAKW, ID-MASTER.
26 RETURN,CAK-2.
27 GET,CCAM,ID'.TWXDATA.
28 SAVE, CCA.M-CCAW 1, ID-BATCHIN.
29 RETURN,CCAM.
30 GET, CLA, ID-TWXDATA.
31 SAVE,CLAM-CLAWl, ID-BATCHIN.
32 RETURN,CLAN.
33 GET,CLKM,ID-TWXDATA.
34 SAVE, CLKM-CLKW ,ID-MASTER.

35 RETURN,CLKM.
36 GET, R2M, ID-TW XDATA.
37 SAVE, R2MM-R2MWI ,ID-MASTER.

38 SAVE, R2MM-R2MW1, ID-DATAI2.
39 SAVE, R2ftM-R2blW , ID-DATA22.
40 RETURN,R2 M.
41 GET,R4MMID-TWXDATA.
42 SAVE,R4MM-R4MlWl ID-DATA12.
43 SAVE,R4XMMR4M4W1,ID-DATA22.
44 RETURN,R4MM.
45 GET,RABM, ID-TWXDATA.
46 SAVE, RABH-RABWI, ID-DATAl 1.

47 SV,RABM-RABW 1,*ID-DATA2 1.
48 RETURNtRAHM.
49 GET,RAPM, ID-TWXDATA.

50 SAVE, RAPM-RAPW 1, ID-DATAI 1.

87

AD-AI15 697 AIR FORCE INST OF TECH ARI"T-PATTERSONd AFB OH SCHOD--EYC F/9 15/7
THEATER WARFARE PROGAMS AT AFITt AN-INSTRUCTIONAL AIO.l1W
MAR 82 A WAISANEN

UNCLASSIFIED AFIT/SST/O/82M-25

51 SAVE, RAPIIRAPW 1, ID-DATA2 1.
52 RETURN,RAPM.
53 GET,RBLM,ID-TWXDATA.
54 SAVE, RBLM-RBLW1 ,ID-DATA 12.
55 RETURN,RBLH.
56 GET, RCRM, ID-TWXD"ATA.
57 SAVE, RCRM-RCRW41, ID-BATCHIN.
58 RETURN,RCRM.
59 GET,RLGM,ID-TW'XDATA.
60 SAVE,RLGM-RLGWI,IDoBATCHIN.
61 RETURN,RLGM.
62 GET, RLUL1, ID-TWXDATA.
63 SAVE, RLUM-RLUW 1, ID-BATCHIN.
64 RETURN,RLUI.
65 GET, RACM, ID-NWXDATA.
66 SAVE,RiACM-RACW,ID-M4ASTER.
67 RETURN,RACM.
68 GETR&4RM, ID-TWXDATA.
69 SAVE, RMRN-RIRR1, ID-DATA1 1.
70 SAVE, RLI&%I-RMRR1 , ID-DATA2L.
71 RETURN,RMRM.
72 GET,RMUHID-TWXDATA.

73 SAVE, IDUM-1FUW, ID-HASTER.
74 RETURN,RHUM.
75 GET,RPPX,ID-TWXDATA.
76 SAVE,RPPM-RPPW1, ID-iSATCHIN-
77 RETURN,RPPM.
78 GET,RRLM4,1D-TWXDATA.
79 SAVE, RRLM-RRLW1 ,ID-DATA22.
80 RETURN,RRLM.
81 GET, RST, ID-TWXDATA.
82 SAVE, RSTM-RSTW , ID-BATCHIN.

*83 RETURN,RSTh.
84 GET,RTGM, ID-TWXDATA.
85 SAVE, RTGklRTGW1, IDUbATCHIN.
86 RETURN,RTGM.
87 GET,RWXH,ID-TWXDATA.
88 SAVE, RWXH-RWD , ID-HASTER.
89 RETURN,RWXM.
90 REVERT.

88

91 .DATAGO.
92 .PROC,GO,N.
93 BUILD ID-DATAl# N.
94 BUIL ID-DATA2# N.
95 REVERT.
96 .EOR
97 .DATAJOB.
98 TWX,T500,I0OO0,Q1IOOOOO. T800855 FOX
99 BEGIN,NOSFIL.

100 GET,TWXGO,ID-TJX&UN.
101 GET,TWXLIB, ID-TWXPROG.
102 TWJXGO.
103 REQUEST,LGO,*PF.
104 GET,AR, ID-TWXPROG.
105 FTN5,I-AR,LO-0.
106 CATALOG,LGO,ARLGO, ID-T800855,XR-F0XPW-FOX.
107 RETURN,LGO,AR.
108 GET,LB ,ID-TWXPROG.
109 REQUEST,LGO,*PF.
110 FTS5,I-LGLO-0.
il1 CATALOG,LGO,LBLGO, ID-T800855,XR-FOX,PW-FOX.
112 RETURN,LGO.
113 GET,MISEG,ID-TWXRUN.
114 GET,MI,ID-TWXPROG.
115 MISEG.
116 GET,APESEG, ID-TWXRUN.
117 GET,APE,ID-TWXPROG.
118 APESEG.
119 GET,LISEG,ID-TWXRUN.
120 GET,LI,ID-TWXPROG.
121 LISEG.
122 GET, INPTGO,ID-TWXRUN.
123 INPTGO.
124 GET,PROCGO, ID-TWXRUN.
125 PROCGO.
126 .EOF

89

Appendix E

-TWX File escriptions

-90-

Appendix E

TWX File Demariotions

Four indirect library files are used for storing all the

data files, procedure files, programs and utility routines re-

quired by the TWX at AFIT. These library files are TWXDATA,

TWXRUN, TWXPROG and TWXUTIL, respectively. The primary reason

behind separating the files was to emphasize the difference in

the files as much as possible. This separation method is

equivalent to the file-string identifiers used for the TWX files

at Maxwell AFB.

TWXDATA

All data files are stored in the indirect library file

TWXDATA (Table VI). There are two types of data files, sequen-

tial card image and direct access binary. The following nomen-

clature has been adopted to distinguish between them

ABBx#

where:

A - C if the file is sequential (card image)
R if the file is random (direct access)

BB = file identifier

x - M if the file is a master file
W if the file is a working file

- seminar number

* - 91-

11

TWXDATA contains only file masters. During initialization,

copies are made of these files and are placed in the IFS files

HASTER, DATA11, DATAl2, DATA21, DATA22, and BATCHIN. MASTER con-

tains those data files which are not modified during the execu-

tion phase. All IFS files with the prefix "DATA" contain the

modifiable input files to APE, 1AI and LI where the name is of the

form

DATAxy

where :

x - side (1 for Blue and 2 for Red)

y - 1, 2 or 3

1 - input files to APE and LI
2 - input files to MI (output from APE)
3 - output files from MI and LI

SATCHIN contains the input files to the batch jobs and the

modified data files. Prior to the next day's run, those files

which were originally in the DATA files (RAPW#, RABW#, R2MW#,

R4MW#, RBLW# and RRLW#) must be modified with the appropriate

utility programs and replaced.

- 92 -

TABLE VI

TWXDATA Files

Data File Description

CAKM Air constants file
CCA Combined actions file

CLAM Land actions file
CLKM Land constants file
RABM Airbase file

RACM Aircraft file
RAPM AAFCE planning file
RBLM Blue land file
RRL Red land file
RCRMI Combined reconnaissance file

(not required for theater simulation)
RLGM Logistics file
RLUM Land units file
RMUM Munition load file
RNRM Mission reference file
R2MM Mission working master file

(2ATAF)
R4MM Mission working master file

(4ATAF)
RNWH Mission working master file

(ATAF flag not set)
RPPM Preprogrammed control file

(initially blank filled)
RSTM Statistics file

(initially blank filled)
RTGM Target file
RWXM Weather file

TWXPROG and TWXRUN

Two files are used for storing programs; TWXPROG and TWXKUN.

TWXPROG contains only those programs (Table VII) which are total-

ly source code (AR, APE, MI, LI, LB and TWXLIB). Programs in

TWXRUN (Table IIIX) are preceded by a procedure file which com-

piles the program, accesses the necessary data files, executes

the program, and replaces the modified data files. These pro-

-93-

grams are the relatively small batch programs SQ, MR, AG, I.A, OR

and LA. The purpose of this separation is to maximize clarity

and minimizestora&e space_.- -The primary-iunction of TWXRUN is

the storage of procedure files. Since the relatively small batch

programs are prefixed with procedure files, they are stored in

TWXRUN. The object decks for each of the small batch programs

could be created once and stored on a disk file but then storage

space would be required for two procedure files, the program

source and its object deck for each of the programs. This way,

only one procedure file and source is stored for each program.

TABLE VII

TWXPROG Files

File Description

APE AAFCE Planning Executive program
AR Air battle simulation program
LB Land battle simulation program
LI Land order input program
MI Mission order input program

MISC Unmodified utility programs
TAXLIB TWX Library routines
XXSRCE Original main driver routine XX

-94-

TABLE IIX

TWXRUN Files

File Description

AGGO, AGGOB AG execution proc

APEGO APE execution proc

APESEG APE segmentation proc
ARGO AR batch job spawning proc
ARSEG AR segmentation proc (unvarified)

ARSEGO AR segmentation spawning proc

INPTGO INPTR compilation and cataloging proc
IPGO IP execution proc

LAGO, LAGOB LA execution proc
LBGO LB execution spawning proc
LBSEG LB segmentation spawning proc
LBSEG LB segmentation proc (unvarified)
LBSEGO LB segmentation spawning proc
LGGO LG execution proc (no longer used)
LIGO LI execution proc
LISEG LI segmentation proc
MAGO, MAGOB 1A execution proc

MIGO MI execution proc
MISEG MI segmentation proc
MR MR execution proc
ORGO, ORGOB OR execution proc
SETUP TWX file initialization proc

SQGO SQ execution proc

STGO ST execution proc
TWXJCL original Honeywell JCL (archive file)
WSSGO WSS execution proc

95

-.95 -i

TWXUTIL

During the execution of the TWX, various data files must be

modified, some directly, others indirectly. Unlike the sequen-

tial card image files which can be printed, edited, and replaced,

direct access files require programs for reading and editing. Of

the 22 data files used in TWX, 18 are direct access (these are

identified by the first character; "R" for random). For these

data files, programs have been developed to permit editing (Table

IX).

TABLE IX

TWXUTIL Files

File(s) read

Program and Modified

RABREAD RABx#
RACREAD RACx
RAPREAD RAPx#, RPPx#

(no changes permitted)
RBLREAD RLx#, RRLx#, RMUx
RCRREAD RCRx#
RLUREAD RLUx#
RMRREAD RMRx#

(no changes permitted)
RPPREAD RPPx#
RTGREAD RTGx#
R2MREAD R2MX#, R4Mx#, RLGx

and RMRx# (logicals are
displayed as integers)

- 96 -

GST/OS/82M-15

Vita

Anthony Waisanen was born in Warren, Minnesota on 7 January

1953 to Einard and Doris Waisanen. After graduating from Wadena

Senior High School, Wadena, Minnesota in 1971, he enrolled at

Concordia College, Moorhead, Minnesota. A year later, he

enrolled at the University of Minnesota, Duluth where he received

a commission in the Air Force through ROTC and Bachelor of

Science degrees in Mathematics and Biology in June 1976.

Following graduation, he was employed as a conventional weapon

systems analyst at Eglin AFB, Florida from 24 October 1976 to 13

July 1980 before entering AFIT in September 1980. He is married

to the former Holly A. Eifert of Wadena, Minnesota.

Permanent address: box 116

Verndale, Minnesota 56481

- 97 o

<1

(IfT.A 9TPTn
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIErNT'S CATALOG NUMBER

AFIT/GST/OS/82M-15 -A! i
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

THEATER WARFARE PROGRAMS AT AFIT:
AN INSTRUCTIONAL AID M.S. Thesis

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

Anthony Waisanen
Capt USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Air Force Institute of Technology
(AFIT/FN)

Wright-Patterson AFB OH 45424

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Institute of Technology (AFIT/EN) March lqS2
Wright-Patterson AFB OF 45424 13. NUMBER OF PAGES

'OR
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlting Office) I5. SECURITY CLASS. (of this report)

1TCLASSIFIFjn

15a. DECL ASSI FICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES V%YNN E.
S4 J U N 1 an for Research and

Approved for public release; TAW AFR 190-17 W e ev. op
AIR FORCE INSTIT ATC)
WRIGHT-PAITERSOL4 AF3, OH 45433

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Computerized simulation Operations research

Programming techniques Central Europe scenario

_amtga models
20. A" ACT (Continue on reverae side If necessary and Identify by block number)

This thesis report details the processes and modifications that were
required in order to execute the Theater Warfare Fxercise ("I.7) on the CI)C
computers at Wright-Patterson AFE. Prior to this effort, the T17 programs
and data files could only be accessed and executed with 'oneywell computers.

By modif ing the data files, program coding, overlaying techniques,
and operation, the TWX can now he run on any rCT computer. Any other
computer with sufficient central memory and an ANSI standard FORTRAN-77

r ORM
DO I ,AN 73 1473 EDITION OF I NOV 65 IS OBSOLETE TTCLAqSIFTn

SECURITY CLASSIFICATION OF THIS PAGE (When Data Ente

.JTCrLASSIFI£p
SECURITY CLASSIFICATION OF THIS PAGE(When Data Enteted)

BLOCY 20.
7 compiler can also execute the programs provided the operation

rmethods (procedure files) are modified).'p

I!NCLASIFIENT
SECURITY CLASSIFICATION OF THIS PAGE 'When Date Entered)

